Support

Support Options

Submit a Support Ticket

 

Tags: molecular electronics

Description

In 1959, physicist Richard Feynman presented an amazing talk entitled There's Plenty of Room at the Bottom, in which he proposed making very small circuits out of molecules. More than forty years later, people are starting to realize his vision. Thanks to Scanning Tunneling Microscope (STM) probes and "self-assembly" fabrication techniques, it is now possible to connect electrodes to a molecule and measure its conductance. In 2004, Mark Hersam et al. reported the first experimental measurement of a molecular resonant tunneling device on silicon. This new field of Molecular Electronics may someday provide the means to miniaturize circuits beyond the limits of silicon, keeping Moore's Law in force for many years to come.

Learn more about molecular electronics from the resources on this site, listed below. More information on Molecular electronics can be found here.

Resources (1-20 of 146)

  1. A Personal Quest for Information

    19 Feb 2004 | Online Presentations | Contributor(s): Vwani P. Roychowdhury

    This talk will report results and conclusions from my personal investigations into several different disciplines, carried out with the unifying intent of uncovering some of the fundamental...

    http://nanohub.org/resources/155

  2. Amine Linked Single Molecule Circuits: Systematic Measurements & Understanding

    02 Jul 2007 | Online Presentations | Contributor(s): Mark S Hybertsen

    Formation and function of well-defined linkages between organic molecules and metallic electrodes has been a key issue in the field of molecular electronics. We recently discovered that the...

    http://nanohub.org/resources/2894

  3. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than...

    http://nanohub.org/resources/513

  4. An Experimentalists’ Perspective

    19 Dec 2007 | Online Presentations | Contributor(s): Arunava Majumdar

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3628

  5. Atomic Force Microscopy

    01 Dec 2005 | Online Presentations | Contributor(s): Arvind Raman

    Atomic Force Microscopy (AFM) is an indispensible tool in nano science for the fabrication, metrology, manipulation, and property characterization of nanostructures. This tutorial reviews some of...

    http://nanohub.org/resources/520

  6. Basic Electronic Properties of DNA

    28 Jul 2005 | Online Presentations | Contributor(s): M. P. Anantram

    http://nanohub.org/resources/526

  7. BNC Annual Research Symposium: Nanoelectronics and Semiconductor Devices

    23 Apr 2007 | Online Presentations | Contributor(s): David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/2632

  8. Can numerical “experiments” INSPIRE physical experiments?

    20 Dec 2007 | Online Presentations | Contributor(s): Supriyo Datta

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3716

  9. Chemical Modification of GaAs with TAT Peptide and Alkylthiol Self-Assembled Monolayers

    03 Aug 2006 | Online Presentations | Contributor(s): Hamsa Jaganathan

    The use of self-assembled monolayers (SAM) on semiconductors creates a basis for the design and creation of bioelectronics, such as biosensors. The interface between the surface and an organic...

    http://nanohub.org/resources/1670

  10. Chemically Enhanced Carbon-Based Nanomaterials and Devices

    09 Nov 2010 | Online Presentations | Contributor(s): Mark Hersam

    Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries,...

    http://nanohub.org/resources/9929

  11. Chemistry of Molecular Monolayers

    09 Jul 2003 | Online Presentations | Contributor(s): David Allara

    Chemistry of Molecular Monolayers

    http://nanohub.org/resources/145

  12. CMOS Nanotechnology

    07 Jul 2004 | Online Presentations | Contributor(s): Mark Lundstrom

    In non-specialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor...

    http://nanohub.org/resources/166

  13. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | Online Presentations | Contributor(s): Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the...

    http://nanohub.org/resources/2567

  14. Computing the Horribleness of Soft Condensed Matter

    19 Oct 2007 | Online Presentations | Contributor(s): Eric Jakobsson

    A great triumph of computer simulations 40 years ago was to make the liquid state of matter understandable in terms of physical interactions between individual molecules. Prior to the first...

    http://nanohub.org/resources/3424

  15. Contacting Molecules - Chemistry in Molecular Electronics

    12 Apr 2004 | Online Presentations | Contributor(s): Ilona Kretzschmar

    The study of the basic electron transport mechanism through molecular systems has been made accessible by fabrication techniques that create metallic contacts to a small number of organic...

    http://nanohub.org/resources/160

  16. DNA Charge Motion: Regimes and Behaviors

    28 Jul 2005 | Online Presentations | Contributor(s): Mark A. Ratner

    Because DNA is a quasi-one-dimensional species, and because each base is a pi-type chromphore, it was long ago suggested that DNA could conduct electricity. This has become a widely...

    http://nanohub.org/resources/528

  17. DNA Nanowires

    06 Aug 2006 | Online Presentations | Contributor(s): Margarita Shalaev

    DNA is a relatively inexpensive and ubiquitous material that can be used as a scaffold for constructing nanowires. Our research focuses on the manufacturing of DNA-templated, magnetic nanowires....

    http://nanohub.org/resources/1679

  18. ECE 453 Lecture 10: Finite Difference Method 1

    17 Sep 2004 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 2.2

    http://nanohub.org/resources/599

  19. ECE 453 Lecture 11: Finite Difference Method 2

    20 Sep 2004 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapter 2.2

    http://nanohub.org/resources/600

  20. ECE 453 Lecture 12: Separation of Variables

    20 Sep 2004 | Online Presentations | Contributor(s): Supriyo Datta

    Reference Chapters 2.2 & 2.3

    http://nanohub.org/resources/601

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.