Tags: molecular electronics

Description

In 1959, physicist Richard Feynman presented an amazing talk entitled There's Plenty of Room at the Bottom, in which he proposed making very small circuits out of molecules. More than forty years later, people are starting to realize his vision. Thanks to Scanning Tunneling Microscope (STM) probes and "self-assembly" fabrication techniques, it is now possible to connect electrodes to a molecule and measure its conductance. In 2004, Mark Hersam et al. reported the first experimental measurement of a molecular resonant tunneling device on silicon. This new field of Molecular Electronics may someday provide the means to miniaturize circuits beyond the limits of silicon, keeping Moore's Law in force for many years to come.

Learn more about molecular electronics from the resources on this site, listed below. More information on Molecular electronics can be found here.

All Categories (41-60 of 174)

  1. Computing the Horribleness of Soft Condensed Matter

    19 Oct 2007 | | Contributor(s):: Eric Jakobsson

    A great triumph of computer simulations 40 years ago was to make the liquid state of matter understandable in terms of physical interactions between individual molecules. Prior to the first simulations of liquid argon and liquid water in the 1960's, there was no quantitatively rigorous molecular...

  2. Energy-level Alignment of Aryl Thiols Chemisorbed on Metal Surfaces: Implications for Molecular Electronic Junctions

    27 Sep 2007 | | Contributor(s):: Roger D. van Zee

    Charge-transport through the interface is a key part of the behavior of any electronic junction. One interface property important to molecular-electronic junctions is the energetic mismatch between the conductive levels of the molecule and the Fermi level of the contact material. This seminar...

  3. MCW07 Simple Models for Molecular Transport Junctions

    13 Sep 2007 | | Contributor(s):: Misha Galperin, Abraham Nitzan, Mark Ratner

    We review our recent research on role of interactions in molecular transport junctions. We consider simple models within nonequilibrium Green function approach (NEGF) in steady-state regime.

  4. MCW07 Conductance Switching in Fluorene/TiO2 Molecular Heterojunctions

    13 Sep 2007 | | Contributor(s):: Richard L.McCreery

    Molecular junctions consisting of a monolayer of fluorene and 10 nm of TiO2 between conducting contacts exhibit a memory effect upon positive polarization of the of the TiO2 for a few milliseconds. The junction conductance increases for a period of several minutes, but can be “erased” by a...

  5. MCW07 Molecular Electronics and the Bottom-up View of Electronic Conduction

    12 Sep 2007 | | Contributor(s):: Supriyo Datta

    Molecular electronics is commonly associated with the bottom-up approach to nanofabrication. My objective in this talk is to point out how it also leads to a bottom-up view of electronic conduction completely different from the standard top-down approach that starts from large conductors and...

  6. MCW07 Silicon Based Nanopore Sensors for Detection of DNA Molecules

    11 Sep 2007 | | Contributor(s):: Samir Iqbal, Demir Akin, Rashid Bashir

    Solid-state nanopores have emerged as possible candidates for next-generation DNA sequencing devices. In this talk, we will review our recent work in development of solid-state nanopore channels that are selective towards single strand DNA (ssDNA). Nanopores functionalized with a 'probe' of...

  7. MCW07 Electronic Level Alignment at Metal-Molecule Contacts with a GW Approach

    05 Sep 2007 | | Contributor(s):: Jeffrey B. Neaton

    Most recent theoretical studies of electron transport in single-molecule junctions rely on a Landauer approach, simplified to treat electron-electron interactions at a mean-field level within density functional theory (DFT). While this framework has proven relatively accurate for certain systems,...

  8. MCW07 Modeling Charging-based Switching in Molecular Transport Junctions

    23 Aug 2007 | | Contributor(s):: Sina Yeganeh, Misha Galperin, Mark Ratner

    We will discuss several proposed explanations for the switching and negative differential resistance behavior seen in some molecular junctions. It is shown that a proposed polaron model is successful in predicting both hysteresis and NDR behavior, and the model is elaborated with image charge...

  9. Amine Linked Single Molecule Circuits: Systematic Measurements & Understanding

    02 Jul 2007 | | Contributor(s):: Mark S Hybertsen

    Formation and function of well-defined linkages between organic molecules and metallic electrodes has been a key issue in the field of molecular electronics. We recently discovered that the conductance of single molecule junctions formed using gold-amine linkages can be measured reliably and...

  10. Orbital Mediated Tunneling in a New Unimolecular Rectifier

    25 May 2007 | | Contributor(s):: Robert Metzger, NCN at Northwestern University

    In 1997 we showed that hexadecylquinolinium tricyanoquinodimethanide is a unimolecular rectifier, by scanning tunneling microscopy and also as a Langmuir-Blodgett (LB) monolayer, sandwiched between Al electrodes. We have now seen rectification in a new molecule: this rectification can be followed...

  11. BNC Annual Research Symposium: Nanoelectronics and Semiconductor Devices

    23 Apr 2007 | | Contributor(s):: David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  12. Electronics at Nano scale

    06 Apr 2007 | | Contributor(s):: Rakesh Kumar gupta

    Current research on nanoelectronics is extremely diverse. Exiting technology of optical lithography used for the fabrication of electronics components,devices and systms already reached to their extreme limits. The devises with minimum feature dimensions less than 50nm and below this are almost...

  13. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | | Contributor(s):: Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the Department of Electrical and Computer Engineering, the University of Western Ontario, London, ON, Canada....

  14. ECE 453 Lecture 15c: Basis Functions 3

    04 Oct 2004 | | Contributor(s):: Supriyo Datta

    This lecture is available only in video format.

  15. ECE 453 Lecture 15b: Basis Functions 2

    01 Oct 2004 | | Contributor(s):: Supriyo Datta

    This lecture is available only in video format.

  16. Surprises on the nanoscale: Plasmonic waves that travel backward and spin birefringence without magnetic fields

    08 Jan 2007 | | Contributor(s):: Daniel Neuhauser

    As nanonphotonics and nanoelectronics are pushed down towards the molecular scale, interesting effects emerge. We discuss how birefringence (different propagation of two polarizations) is manifested and could be useful in the future for two systems: coherent plasmonic transport of near-field...

  17. Nanoscale Thermodynamics

    13 Dec 2006 | | Contributor(s):: John Enriquez

    This is the fifth contribution from the students in the University of Texas at El Paso Molecular Electronics course given in the fall of 2006. This introduces nanothermodynamics, the study of small system equilibrium. Nanothermodynamics was established in the early 60’s, but has recently...

  18. Computational Chemistry: An Introduction to Molecular Dynamic Simulations

    08 Dec 2006 | | Contributor(s):: Shalayna Lair

    This module gives a brief overview of computational chemistry, a branch of chemistry concerned with theoretically determining properties of molecules. The fundamentals of how to conduct a computational project are discussed as well as the variety of different models that can be used. Because of...

  19. Spectroscopic Ellipsometry

    12 Dec 2006 | | Contributor(s):: Lynn Marie Santiago

    This is the fourth contribution from the students in the University of Texas at El Paso Molecular Electronics course given in the fall of 2006.This presentation is presented at the undergraduate level and introduces spectroscopic ellipsometry, which is one of the most important characterization...

  20. Electrical Resistance: an Atomistic View

    26 Oct 2006 | | Contributor(s):: Supriyo Datta

    This tutorial article presents a “bottom-up” view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remark ably enough, no serious quantum mechanics is needed to understand electrical...