Tags: MOSFET

Description

The metal–oxide–semiconductor field-effect transistor is a device used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the two other contacts called source and drain. The channel can be of n-typeor p-type, and is accordingly called an nMOSFET or a pMOSFET (also commonly nMOS, pMOS). It is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. More information on MOSFET can be found here.

Teaching Materials (1-20 of 30)

  1. A methodology for SPICE-compatible modeling of nanoMOSFETs

    17 Nov 2010 | | Contributor(s):: Alba Graciela Avila, David Espejo

    An original SPICE-compatible model for Intel's 45nm High-K MOSFET is presented. It takes into account some Quantum-Mechanical Effects that occur at small scale like Channel Length Modulation (CLM), Threshold Voltage variation and Velocity saturation, and is the first in his class that is not...

  2. ABACUS: Test for MOSFET Tool

    18 Oct 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Dragica Vasileska, Gerhard Klimeck

    The objective of this test is to give an idea to a self-learning students or to instructors in the case this test is used in a classroom the level of understanding of this topic when students have gone through the learning material, worked exercises and have completed the assignments and the...

  3. Atomistic Simulations of Reliability

    06 Jul 2010 | | Contributor(s):: Dragica Vasileska

    Discrete impurity effects in terms of their statistical variations in number and position in the inversion and depletion region of a MOSFET, as the gate length is aggressively scaled, have recently been researched as a major cause of reliability degradation observed in intra-die and die-to-die...

  4. Exercise for MOSFET Lab: Device Scaling

    28 Jun 2010 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This exercise explores device scaling and how well devices are designed.

  5. Exercise for MOSFET Lab: DIBL Effect

    03 Aug 2009 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    In this exercise students are required to examine the drain induced barrier lowering (DIBL) effect in short channel MOSFET devices.

  6. Exercise for MOSFET Lab: Long Channel vs. Short Channel Device

    03 Aug 2009 | | Contributor(s):: Dragica Vasileska

    In this exercise studentsare required to simulate long channel device for which the graduate channel approximation is valid and the short channel device for which velocity saturation effect starts to play significant role.

  7. Illinois ECE 440: MOS Field-Effect Transistor Homework

    28 Jan 2010 | | Contributor(s):: Mohamed Mohamed

    This homework covers Output Characteristics and Mobility Model of MOSFETs.

  8. MOSCap: First-Time User Guide

    30 Mar 2009 | | Contributor(s):: SungGeun Kim, Benjamin P Haley, Gerhard Klimeck

    This first-time user guide provides an introduction to MOSCap. The MOSCap tool simulates the one-dimensional (along the growth direction) electrostatics in typical single and dual-gate Metal-Oxide-Semiconductor device structures as a function of device size, geometry, oxide charge, temperature,...

  9. MOSFET - Theoretical Exercises

    03 Aug 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  10. MOSFET Design Calculations - Step 1

    30 Dec 2010 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  11. MOSFET Design Calculations - Step 1 (Instructor Copy)

    30 Dec 2010 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  12. MOSFET Design Calculations - Step 2

    03 Mar 2012 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  13. MOSFET Design Calculations - Step 2

    31 Dec 2010 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  14. MOSFET Design Calculations - Step 2 (Instructor Copy)

    03 Mar 2012 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  15. MOSFET Design Calculations - Step 2 (Instructor Copy)

    31 Dec 2010 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  16. MOSFET Design Calculations - Step 3

    01 Apr 2012 | | Contributor(s):: Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  17. MOSFET Design Calculations - Step 3 (Instructor Copy)

    01 Apr 2012 | | Contributor(s):: Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  18. MOSFET Design Simulation I

    06 Mar 2012 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  19. MOSFET Design Simulation I (Instructor Copy)

    06 Mar 2012 | | Contributor(s):: Stella Quinones, Jose Valdez

    A series of homework assignments were created to introduce senior level undergraduate Electrical and Computer Engineering students to the design of MOSFETs by combining calculations of MOSFET related design parameters for a set of doping and oxide thickness values with the analysis of MOSFET...

  20. MOSFET Exercise

    07 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    With this exercise students are familiarized with the punchthrough effect, the series resistance at the source and drain region and the importance of impact ionization at high gate and drain bias conditions.www.eas.asu.edu/~vasileskNSF