Support

Support Options

Submit a Support Ticket

 

Tags: MOSFET

Description

The metal–oxide–semiconductor field-effect transistor is a device used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the two other contacts called source and drain. The channel can be of n-typeor p-type, and is accordingly called an nMOSFET or a pMOSFET (also commonly nMOS, pMOS). It is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. More information on MOSFET can be found here.

All Categories (101-120 of 138)

  1. Lecture 2: Elementary Theory of the Nanoscale MOSFET

    08 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent...

    http://nanohub.org/resources/5308

  2. Lecture 4: Scattering in Nanoscale MOSFETs

    08 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    No MOSFET is ever fully ballistic - there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective...

    http://nanohub.org/resources/5311

  3. Lecture 5: Application to State-of-the-Art FETs

    08 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the...

    http://nanohub.org/resources/5312

  4. Introduction: Physics of Nanoscale MOSFETs

    26 Aug 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    NCN@Purdue Summer School 2008 National Science Fondation Intel Corporation NCN@Purdue Summer School 2008 National Science Fondation Intel Corporation

    http://nanohub.org/resources/5317

  5. 2008 NCN@Purdue Summer School: Electronics from the Bottom Up

    26 Aug 2008 | Workshops | Contributor(s): Muhammad A. Alam, Supriyo Datta, Mark Lundstrom

    Electronics from the Bottom Up is designed to promote the bottom-up perspective by beginning at the nanoscale, and working up to the micro and macroscale of devices and systems. For electronic...

    http://nanohub.org/resources/5305

  6. Physics of Nanoscale MOSFETs

    26 Aug 2008 | Courses | Contributor(s): Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of...

    http://nanohub.org/resources/5306

  7. Lecture 1: Review of MOSFET Fundamentals

    26 Aug 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (drift-diffusion) approach and...

    http://nanohub.org/resources/5307

  8. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | Tools | Contributor(s): Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

    http://nanohub.org/resources/abacus

  9. MOSFET - Theoretical Exercises

    03 Aug 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

    http://nanohub.org/resources/5191

  10. MOSFET Exercise

    07 Jul 2008 | Teaching Materials | Contributor(s): Dragica Vasileska, Gerhard Klimeck

    With this exercise students are familiarized with the punchthrough effect, the series resistance at the source and drain region and the importance of impact ionization at high gate and drain bias...

    http://nanohub.org/resources/4906

  11. How do I derive the 2D electron density used in nano MOSFET calculations?

    Open | Responses: 1

    In nanomos-2.5, the density of charge is obtained by multiplying the square of the wavefunction by a prefactor: with semiclassical method, that prefactor is given by

    http://nanohub.org/answers/question/54

  12. Renaud DAVIOT

    __Researcher at [http://inl.cnrs.fr/ INL]__[[BR]]Reconfigurable digital cells with CNT, Nanowires, molecular devices[[BR]]__Teaching at [http://www.cpe.fr/ CPE Lyon] (France)__[[BR]]FPGA, VHDL,...

    http://nanohub.org/members/26856

  13. MOSfet Homework Assignment - Role of Dielectric Constant and Thickness

    31 Jan 2008 | Teaching Materials | Contributor(s): David K. Ferry

    Use the MOSfet tool on nanoHUB to simulate a n-channel MOSFET with the following parameters: Lsd=LG=45nm (each 15 nodes), oxide thickness of 1.2 nm (K=3.9, 5 nodes), poly-Si gate, junction depth...

    http://nanohub.org/resources/3948

  14. Semiconductor Device Education Material

    28 Jan 2008 | Teaching Materials | Contributor(s): Gerhard Klimeck

    This page has moved to "a Wiki page format" When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic...

    http://nanohub.org/resources/edu_semi

  15. Is there any free licence drift diffusion device simulator that supports MOS and bipolar devices

    Open | Responses: 1

    A sequel to this question is : Is Bambi simulator still available ??

    http://nanohub.org/answers/question/39

  16. Numerical work outs surface potential and capacitance of Mosfets in Matlab

    Open | Responses: 1

    how to work out surface potential and capacitance for Mosfets numerically in matlab?

    http://nanohub.org/answers/question/36

  17. transfer characteristic

    Open | Responses: 2

    how the transfer characteristic of a mosfet depends on the channel doping?(theory)

    http://nanohub.org/answers/question/31

  18. Simulation of highly idealized, atomic scale MQCA logic circuits

    15 Nov 2007 | Papers | Contributor(s): Dmitri Nikonov, George Bourianoff

    Spintronics logic devices based on majority gates formed by atomic-level arrangements of spins in the crystal lattice is considered. The dynamics of switching is modeled by time-dependent solution...

    http://nanohub.org/resources/3527

  19. David Espejo

    Former grad student affiliated with the Microelectronics Center at "Universidad de los Andes" or University of the Andes, Bogota- Colombia.

    Current interests: HPC for...

    http://nanohub.org/members/23702

  20. Electronics From the Bottom Up: top-down/bottom-up views of length

    17 Aug 2007 | Online Presentations | Contributor(s): Muhammad A. Alam

    When devices get small stochastic effects become important. Random dopant effects lead to uncertainties in a MOSFET’s threshold voltage and gate oxides breakdown is a random process. Even...

    http://nanohub.org/resources/2974

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.