Tags: MOSFET

Description

The metal–oxide–semiconductor field-effect transistor is a device used for amplifying or switching electronic signals. In MOSFETs, a voltage on the oxide-insulated gate electrode can induce a conducting channel between the two other contacts called source and drain. The channel can be of n-typeor p-type, and is accordingly called an nMOSFET or a pMOSFET (also commonly nMOS, pMOS). It is by far the most common transistor in both digital and analog circuits, though the bipolar junction transistor was at one time much more common. More information on MOSFET can be found here.

All Categories (101-120 of 204)

  1. Ivan C R nascimento

    https://nanohub.org/members/121504

  2. IWCN 2021: Ab initio Quantum Transport Simulation of Lateral Heterostructures Based on 2D Materials: Assessment of the Coupling Hamiltonians

    14 Jul 2021 | | Contributor(s):: Adel Mfoukh, Marco Pala

    Lateral heterostructures based on lattice-matched 2D materials are a promising option to design efficient electron devices such as MOSFETs [1], tunnel-FETs [2] and energy-filtering FETs [3]. In order to rigorously describe the transport through such heterostructures, an ab-initio approach based...

  3. IWCN 2021: Computational Research of CMOS Channel Material Benchmarking for Future Technology Nodes: Missions, Learnings, and Remaining Challenges

    15 Jul 2021 | | Contributor(s):: raseong kim, Uygar Avci, Ian Alexander Young

    In this preentation, we review our journey of doing CMOS channel material benchmarking for future technology nodes. Through the comprehensive computational research for past several years, we have successfully projected the performance of various novel material CMOS based on rigorous physics...

  4. IWCN 2021: Electronic States in 4H-SiC MOS Inversion Layers Considering Crystal Structure Using Empirical Pseudopotential Method

    15 Jul 2021 | | Contributor(s):: Sachika Nagamizo, Hajime Tanaka, Nobuya Mori

    In this study, to analyze the electronic states in 4H-SiC MOS inversion layers taking account of this feature, we described the crystal structure of 4H-SiC including the internal channel space using the empirical pseudopotential method, and we calculated the electronic states in the triangular...

  5. IWCN 2021: Simulation of Ballistic Spin-MOSFET Devices with Ferromagnetic Channels

    15 Jul 2021 | | Contributor(s):: Patrizio Graziosi, Neophytos Neophytou

    In this work, using the semiclassical top-of-the-barrier FET model, and a spin dependent contact resistance model derived from, we explore the operation of a spin-MOSFET that utilizes such ferromagnetic semiconductors as channel materials, in addition to ferromagnetic source/drain contacts.

  6. JFETIDG Model for Independent Dual-Gate JFETs

    19 Jul 2017 | Compact Models | Contributor(s):

    By Colin McAndrew1, Kejun Xia2

    1. Freescale Semiconductor 2. NXP Semiconductors

    JFETIDG is a compact model for independent dual-gate JFETs. It is also applicable to: resistors with metal shields; the drift region of LDMOS transistors; the collector resistance of vertical...

    https://nanohub.org/publications/173/?v=2

  7. kumar rohit

    https://nanohub.org/members/62042

  8. Lecture 1: Review of MOSFET Fundamentals

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

    A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (drift-diffusion) approach and the meaning of ballistic transport is also included.

  9. Lecture 1b: Nanotransistors - A Bottom Up View

    20 Jul 2010 | | Contributor(s):: Mark Lundstrom

    MOSFET scaling continues to take transistors to smaller and smaller dimensions. Today, the MOSFET is a true nanoelectronic device – one of enormous importance for computing, data storage, and for communications. In this lecture, I will present a simple, physical model for the nanoscale...

  10. Lecture 2: Elementary Theory of the Nanoscale MOSFET

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent lectures.

  11. Lecture 3A: The Ballistic MOSFET

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The IV characteristic of the ballistic MOSFET is formally derived. When Boltzmann statistics are assumed, the model developed here reduces to the one presented in Lecture 2. There is no new physics in this lecture - just a proper mathematical derivation of the approach that was developed...

  12. Lecture 3B: The Ballistic MOSFET

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    This lecture is a continuation of part 3A. After discussion some bandstructure considerations, it describes how 2D and subthreshold electrostatics are included in the ballistic model.

  13. Lecture 4: Scattering in Nanoscale MOSFETs

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    No MOSFET is ever fully ballistic - there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective in this lecture is to present a simple, physical picture that describes the essence of the problem and...

  14. Lecture 5: Application to State-of-the-Art FETs

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the operation of modern FETs.

  15. Lecture 7: Connection to the Bottom Up Approach

    23 Sep 2008 | | Contributor(s):: Mark Lundstrom

    While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally derived from the generic model for a nano-device to show the connection explicitly.

  16. madFETs

    mad-FET introduction The Field-Effect-Transistor has been proposed and implement in many physical systems, materials, and geometries. A multitude of acronyms have developed around these concepts....

    https://nanohub.org/wiki/madFETs

  17. Mark Lundstrom

    Mark Lundstrom is the Don and Carol Scifres Distinguished Professor of Electrical and Computer Engineering at Purdue University. He was the founding director of the Network for Computational...

    https://nanohub.org/members/2862

  18. MATLAB: Negative Capacitance (NC) FET Model

    05 Dec 2015 | | Contributor(s):: Muhammad Abdul Wahab, Muhammad A. Alam

    MATLAB model that calculates the Q-V, C-V, and I-V characteristics of the conventional MOSFET and NC-FET.

  19. Medici

    13 May 2004 | | Contributor(s):: Steven Clark

    MEDICI (Synopsys)

  20. MIT Virtual-Source Tool

    07 Aug 2012 | | Contributor(s):: Xingshu Sun, Xufeng Wang, Yubo Sun, Mark Lundstrom

    Virtual Source Model for MOSFET compact modeling