-
Ionic Selectivity in Channels: complex biology created by the balance of simple physics
05 Jun 2008 | | Contributor(s):: Bob Eisenberg
An important class of biological molecules—proteins called ionic channels—conduct ions (like Na+ , K+ , Ca2+ , and Cl− ) through a narrow tunnel of fixed charge (‘doping’). Ionic channels control the movement of electric charge and current across biological membranes and so play a role in...
-
BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation
04 Jun 2008 | | Contributor(s):: Jayathi Murthy
This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.
-
On the Rise of an Electronic Species: Thoughts on the Impending Singularity
29 Nov 2007 | | Contributor(s):: Kerry Bernstein
The human brain is vastly more complex that our best supercomputers; yet it can be argued that both systems evolve towards common underlying solutions to fundamental compute problems. Biologically-inspired electronic technologies already are enabling new products, and inversely, nano-electronics...
-
Plastic Deformation at Micron and Submicron Scales
28 Nov 2007 | | Contributor(s):: Marisol Koslowski
Most people experiences the way objects plastically deform on a macroscopic scale. From a car crash to the bending of a paper clip plastic deformation occurs in the form of a smooth flow as a response of an applied stress. But due to the constant shrinking on the dimensions of mechanical devices...
-
Microscale Ionic Wind for Local Cooling Enhancement
26 Oct 2007 | | Contributor(s):: David B Go
As the electronics industry continues to develop small, highly functional, mobile devices, new methods of cooling are required to manage the thermal requirements of the not only the chip but the entire system. Comfortable skin temperatures, small form factors, and limited power consumption are...
-
Illinois 2007 Nano-Bio Workshop with nanoHUB Summer School and User Forum
27 Apr 2007 | | Contributor(s):: Narayan Aluru, Eric Jakobsson, Umberto Ravaioli, Dave Mattson, Gerhard Klimeck, Michael McLennan
This summer, on the campus of the University of Illinois, the NCDBN and NCN@UIUC will hold a scientific meeting on "Experimental and Computational Approaches to Understanding Membrane Assemblies and Permeation," a nanoHUB user forum, and a summer school on "Multiscale Theory, Simulation, and...
-
BNC Annual Research Symposium: Nanoscale Energy Conversion
23 Apr 2007 | | Contributor(s):: Timothy S Fisher
This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.
-
Computer Simulation of Nanoparticles, Viruses, and Electrical Power-Generating Bacteria
20 Mar 2007 |
Models of cells and nanometer-scale biosystems are presented that clarify their physico-chemical characteristics and allow for computer- aided design of therapeutic and nanotechnical devices. Multiscale techniques are used to obtain rigorous, coarse-grained equations for the migration and...
-
Atomistic Alloy Disorder in Nanostructures
26 Feb 2007 | | Contributor(s):: Gerhard Klimeck
Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...
-
Towards Multi-Scale Modeling of Carbon Nanotube Transistors
20 Sep 2006 | | Contributor(s):: Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram
Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube...
-
Understanding Phonon Dynamics via 1D Atomic Chains
04 Apr 2006 | | Contributor(s):: Timothy S Fisher
Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices. Despite the importance of phonons, rigorous understanding and inclusion of phonon dynamics in...
-
First Principles-Based Modeling of materials: Towards Computational Materials Design
20 Apr 2006 | | Contributor(s):: Alejandro Strachan
Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...
-
The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics
11 Apr 2006 | | Contributor(s):: Muhammad A. Alam
In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent work in developing a comprehensive theoretical framework to describe the performance of these...
-
Thermal Microsystems for On-Chip Thermal Engineering
04 Apr 2006 | | Contributor(s):: Suresh V. Garimella
Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...
-
Irradiation and Nanomechanics of Multi-Walled Carbon Nanotubes
23 Mar 2006 | | Contributor(s):: Sharon Pregler, Susan Sinnott
Irradiation of nanotube structures with electron and ion beams has been used to produce functionalized nanotubes and fundamentally new structures, including junctions. Here, we build on previous studies to investigate the low-energy electron and ion (Ar and CF3) beam irradiation of triple walled...
-
Engineering the Fiber-Matrix Interface in Carbon Nanotube Composites
23 Mar 2006 | | Contributor(s):: Sharon Pregler, Yanhong Hu, Susan Sinnott
Particle depositions on polymer and carbon substrates to induce surface chemical modification are a growing research topic in particle-surface interactions due to localized deposition energy and the high density of molecules impacting the surface. Previous simulations have shown that particle...
-
Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond
13 Feb 2006 | | Contributor(s):: Mark Ratner, Abraham Nitzan,
Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...
-
Nano-Scale Device Simulations Using PROPHET-Part II: PDE Systems
20 Jan 2006 | | Contributor(s):: yang liu,
Part II uses examples toillustrate how to build user-defined PDE systems in PROPHET.
-
Nano-Scale Device Simulations Using PROPHET-Part I: Basics
20 Jan 2006 | | Contributor(s):: yang liu,
Part I covers the basics of PROPHET,including the set-up of simulation structures and parameters based onpre-defined PDE systems.
-
Nano-Scale Device Simulations Using PROPHET
20 Jan 2006 | | Contributor(s):: yang liu,
These two lectures are aimed to give a practical guide to the use of ageneral device simulator (PROPHET) available on nanoHUB. PROPHETis a partial differential equation (PDE) solver that offers usersthe flexibility of integrating new models and equations for theirnano-device simulations. The...