Please help us continue to improve nanoHUB operation and service by completing our survey - http://bit.ly/nH-survey14. Thank you - we appreciate your time. close

Support

Support Options

Submit a Support Ticket

 

Tags: multiscale models

Description

Nanotechnology sometimes involves mixing something very small into a larger, more conventional system. For example, mixing carbon nanotubes into a conventional polymer gives it added strength. Or, using a carbon nanotube as the channel between two larger, source-drain contacts creates a transistor with improved channel mobility. But simulating such systems becomes a huge challenge. The smaller parts of the system must be solved with great accuracy–for example, by simulating each atom within a carbon nanotube. But the same approach can't possibly be applied to the larger system–for example, to each atom in the thousands of polymer molecules in a realistic sample–or the whole problem would be too big to solve!

Multi-scale methods attempt to solve the problem by stitching together smaller domains (where atomistic models apply) and larger domains (where continuum models apply) into a coherent solution.

Learn more about multi-scale methods from the resources on this site, listed below.

Resources (1-20 of 33)

  1. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and...

    http://nanohub.org/resources/2350

  2. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

    http://nanohub.org/resources/381

  3. BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation

    04 Jun 2008 | Online Presentations | Contributor(s): Jayathi Murthy

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/4717

  4. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | Online Presentations | Contributor(s): Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/2636

  5. Computer Simulation of Nanoparticles, Viruses, and Electrical Power-Generating Bacteria

    20 Mar 2007 | Online Presentations | Contributor(s): Peter J. Ortoleva

    Models of cells and nanometer-scale biosystems are presented that clarify their physico-chemical characteristics and allow for computer- aided design of therapeutic and nanotechnical devices....

    http://nanohub.org/resources/2485

  6. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

    http://nanohub.org/resources/3504

  7. Engineering the Fiber-Matrix Interface in Carbon Nanotube Composites

    23 Mar 2006 | Online Presentations | Contributor(s): Sharon K. Pregler, Yanhong Hu, Susan Sinnott

    Particle depositions on polymer and carbon substrates to induce surface chemical modification are a growing research topic in particle-surface interactions due to localized deposition energy...

    http://nanohub.org/resources/1113

  8. Finite Size Scaling and Quantum Criticality

    02 Jan 2008 | Online Presentations | Contributor(s): Sabre Kais

    In statistical mechanics, the finite size scaling method provides a systematic way to extrapolate information about criticality obtained from a finite system to the thermodynamic limit. For...

    http://nanohub.org/resources/3526

  9. First Principles-based Atomistic and Mesoscale Modeling of Materials

    01 Dec 2005 | Online Presentations | Contributor(s): Alejandro Strachan

    This tutorial will describe some of the most powerful and widely used techniques for materials modeling including i) first principles quantum mechanics (QM), ii) large-scale molecular dynamics...

    http://nanohub.org/resources/434

  10. First Principles-Based Modeling of materials: Towards Computational Materials Design

    20 Apr 2006 | Online Presentations | Contributor(s): Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the...

    http://nanohub.org/resources/1239

  11. Hierarchical Physical Models for Analysis of Electrostatic Nanoelectromechanical Systems (NEMS)

    05 Jan 2006 | Online Presentations | Contributor(s): Narayan Aluru

    This talk will introduce hierarchical physical models and efficient computational techniques for coupled analysis of electrical, mechanical and van der Waals energy domains encountered in...

    http://nanohub.org/resources/850

  12. HPC and Visualization for multimillion atom simulations

    21 Jun 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation gives an overview of the HPC and visulaization efforts involving multi-million atom simulations for the June 2005 NSF site visit to the Network for Computational Nanotechnology.

    http://nanohub.org/resources/187

  13. Illinois 2007 Nano-Bio Workshop with nanoHUB Summer School and User Forum

    27 Apr 2007 | Workshops | Contributor(s): Narayan Aluru, Eric Jakobsson, Umberto Ravaioli, Dave Mattson, Gerhard Klimeck, Michael McLennan

    This summer, on the campus of the University of Illinois, the NCDBN and NCN@UIUC will hold a scientific meeting on "Experimental and Computational Approaches to Understanding Membrane Assemblies...

    http://nanohub.org/resources/2656

  14. Ionic Selectivity in Channels: complex biology created by the balance of simple physics

    05 Jun 2008 | Online Presentations | Contributor(s): Bob Eisenberg

    An important class of biological molecules—proteins called ionic channels—conduct ions (like Na+ , K+ , Ca2+ , and Cl− ) through a narrow tunnel of fixed charge (‘doping’). Ionic channels...

    http://nanohub.org/resources/4726

  15. Irradiation and Nanomechanics of Multi-Walled Carbon Nanotubes

    23 Mar 2006 | Online Presentations | Contributor(s): Sharon K. Pregler, Susan Sinnott

    Irradiation of nanotube structures with electron and ion beams has been used to produce functionalized nanotubes and fundamentally new structures, including junctions. Here, we build on previous...

    http://nanohub.org/resources/1114

  16. Microscale Ionic Wind for Local Cooling Enhancement

    26 Oct 2007 | Online Presentations | Contributor(s): David B Go

    As the electronics industry continues to develop small, highly functional, mobile devices, new methods of cooling are required to manage the thermal requirements of the not only the chip but...

    http://nanohub.org/resources/3358

  17. Modeling and Simulation of Sub-Micron Thermal Transport

    26 Sep 2005 | Online Presentations | Contributor(s): Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices,...

    http://nanohub.org/resources/192

  18. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | Online Presentations | Contributor(s): Mark A. Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow...

    http://nanohub.org/resources/1018

  19. Multiscale Modeling of the Mechanical Behavior of Polymer-Based Nanocomposites

    25 Mar 2004 | Online Presentations | Contributor(s): Catalin Picu

    Polymers filled with nanoscale fillers (carbon nanotubes or nanoparticles) exhibit enhanced properties compared with the neat polymer and with the polymer filled with micron-sized fillers at same...

    http://nanohub.org/resources/158

  20. Nano-Scale Device Simulations Using PROPHET

    20 Jan 2006 | Online Presentations | Contributor(s): Yang Liu, Robert Dutton

    These two lectures are aimed to give a practical guide to the use of a general device simulator (PROPHET) available on nanoHUB. PROPHET is a partial differential equation (PDE) solver that...

    http://nanohub.org/resources/973

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.