Please help us continue to improve nanoHUB operation and service by completing our survey - Thank you - we appreciate your time. close


Support Options

Submit a Support Ticket


Tags: multiscale models


Nanotechnology sometimes involves mixing something very small into a larger, more conventional system. For example, mixing carbon nanotubes into a conventional polymer gives it added strength. Or, using a carbon nanotube as the channel between two larger, source-drain contacts creates a transistor with improved channel mobility. But simulating such systems becomes a huge challenge. The smaller parts of the system must be solved with great accuracy–for example, by simulating each atom within a carbon nanotube. But the same approach can't possibly be applied to the larger system–for example, to each atom in the thousands of polymer molecules in a realistic sample–or the whole problem would be too big to solve!

Multi-scale methods attempt to solve the problem by stitching together smaller domains (where atomistic models apply) and larger domains (where continuum models apply) into a coherent solution.

Learn more about multi-scale methods from the resources on this site, listed below.

No results found, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.