Tags: multiscale models

Description

Nanotechnology sometimes involves mixing something very small into a larger, more conventional system. For example, mixing carbon nanotubes into a conventional polymer gives it added strength. Or, using a carbon nanotube as the channel between two larger, source-drain contacts creates a transistor with improved channel mobility. But simulating such systems becomes a huge challenge. The smaller parts of the system must be solved with great accuracy–for example, by simulating each atom within a carbon nanotube. But the same approach can't possibly be applied to the larger system–for example, to each atom in the thousands of polymer molecules in a realistic sample–or the whole problem would be too big to solve!

Multi-scale methods attempt to solve the problem by stitching together smaller domains (where atomistic models apply) and larger domains (where continuum models apply) into a coherent solution.

Learn more about multi-scale methods from the resources on this site, listed below.

All Categories (1-20 of 33)

  1. Sumit Kumar Sinha

    Completed my B.Tech (Mechanical engineering), M.tech (Design & Manufacturing) from National Institute of Technology Silchar, India & currently pursuing my Ph.D. from Malaviya National Institute of...

    http://nanohub.org/members/189614

  2. Derek Olson

    Completed a PhD in mathematics at the University of Minnesota and is currently a postdoctoral researcher at Rensselaer Polytechnic Institute with broad research interests in numerical analysis,...

    http://nanohub.org/members/172119

  3. Ionic Selectivity in Channels: complex biology created by the balance of simple physics

    05 Jun 2008 | | Contributor(s):: Bob Eisenberg

    An important class of biological molecules—proteins called ionic channels—conduct ions (like Na+ , K+ , Ca2+ , and Cl− ) through a narrow tunnel of fixed charge (‘doping’). Ionic channels control the movement of electric charge and current across biological membranes and so play a role in...

  4. BNC Annual Research Review: An Introduction to PRISM and MEMS Simulation

    04 Jun 2008 | | Contributor(s):: Jayathi Murthy

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  5. On the Rise of an Electronic Species: Thoughts on the Impending Singularity

    29 Nov 2007 | | Contributor(s):: Kerry Bernstein

    The human brain is vastly more complex that our best supercomputers; yet it can be argued that both systems evolve towards common underlying solutions to fundamental compute problems. Biologically-inspired electronic technologies already are enabling new products, and inversely, nano-electronics...

  6. Plastic Deformation at Micron and Submicron Scales

    28 Nov 2007 | | Contributor(s):: Marisol Koslowski

    Most people experiences the way objects plastically deform on a macroscopic scale. From a car crash to the bending of a paper clip plastic deformation occurs in the form of a smooth flow as a response of an applied stress. But due to the constant shrinking on the dimensions of mechanical devices...

  7. Microscale Ionic Wind for Local Cooling Enhancement

    26 Oct 2007 | | Contributor(s):: David B Go

    As the electronics industry continues to develop small, highly functional, mobile devices, new methods of cooling are required to manage the thermal requirements of the not only the chip but the entire system. Comfortable skin temperatures, small form factors, and limited power consumption are...

  8. Illinois 2007 Nano-Bio Workshop with nanoHUB Summer School and User Forum

    27 Apr 2007 | | Contributor(s):: Narayan Aluru, Eric Jakobsson, Umberto Ravaioli, Dave Mattson, Gerhard Klimeck, Michael McLennan

    This summer, on the campus of the University of Illinois, the NCDBN and NCN@UIUC will hold a scientific meeting on "Experimental and Computational Approaches to Understanding Membrane Assemblies and Permeation," a nanoHUB user forum, and a summer school on "Multiscale Theory, Simulation, and...

  9. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | | Contributor(s):: Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  10. Computer Simulation of Nanoparticles, Viruses, and Electrical Power-Generating Bacteria

    20 Mar 2007 | | Contributor(s)::

    Models of cells and nanometer-scale biosystems are presented that clarify their physico-chemical characteristics and allow for computer- aided design of therapeutic and nanotechnical devices. Multiscale techniques are used to obtain rigorous, coarse-grained equations for the migration and...

  11. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | | Contributor(s):: Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and discrete states. But what if the material is fundamentally disordered? What if the disorder is at the...

  12. Towards Multi-Scale Modeling of Carbon Nanotube Transistors

    20 Sep 2006 | | Contributor(s):: Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram

    Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube...

  13. Understanding Phonon Dynamics via 1D Atomic Chains

    04 Apr 2006 | | Contributor(s):: Timothy S Fisher

    Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices. Despite the importance of phonons, rigorous understanding and inclusion of phonon dynamics in...

  14. First Principles-Based Modeling of materials: Towards Computational Materials Design

    20 Apr 2006 | | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  15. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    11 Apr 2006 | | Contributor(s):: Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent work in developing a comprehensive theoretical framework to describe the performance of these...

  16. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  17. Irradiation and Nanomechanics of Multi-Walled Carbon Nanotubes

    23 Mar 2006 | | Contributor(s):: Sharon Pregler, Susan Sinnott

    Irradiation of nanotube structures with electron and ion beams has been used to produce functionalized nanotubes and fundamentally new structures, including junctions. Here, we build on previous studies to investigate the low-energy electron and ion (Ar and CF3) beam irradiation of triple walled...

  18. Engineering the Fiber-Matrix Interface in Carbon Nanotube Composites

    23 Mar 2006 | | Contributor(s):: Sharon Pregler, Yanhong Hu, Susan Sinnott

    Particle depositions on polymer and carbon substrates to induce surface chemical modification are a growing research topic in particle-surface interactions due to localized deposition energy and the high density of molecules impacting the surface. Previous simulations have shown that particle...

  19. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | | Contributor(s):: Mark Ratner, Abraham Nitzan,

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...

  20. Nano-Scale Device Simulations Using PROPHET-Part II: PDE Systems

    20 Jan 2006 | | Contributor(s):: yang liu,

    Part II uses examples toillustrate how to build user-defined PDE systems in PROPHET.