Support

Support Options

Submit a Support Ticket

 
Home Tags nano/bio All Categories

Tags: nano/bio

All Categories (41-60 of 443)

  1. [Illinois]: Running Average

    10 Jul 2013 | Tools | Contributor(s): Bara Saadah, Nahil Sobh, Jessica S Johnson, NanoBio Node

    This tool implements a running average of a noise series.

    http://nanohub.org/resources/runningaverage

  2. [illinois] BioMEMS and Bionanotechnology: Integration of Life Sciences and Engineering at the Micro and Nanoscale

    10 Jul 2013 | Online Presentations | Contributor(s): Rashid Bashir

    Optical Society of America (OSA), University of Illinois Chapter, IEEE Electron Devices Society (EDS), University of Illinois Chapter, Micro and Nanotechnology Laboratory (MNTL),

    http://nanohub.org/resources/5985

  3. [Illinois]: Error Gradient Estimations Due to Perturbation of One Weight at a Time

    29 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, Jessica S Johnson, NanoBio Node

    This tool trains two-layered networks of sigmoidal units to associate patterns using perturbation of one weight at a time.

    http://nanohub.org/resources/pertgrad1by1

  4. MAE 6291 Lecture 07: FET, WGM and GMR as Signal Transducers

    07 Jul 2013 | Online Presentations | Contributor(s): jonathan silver

    F. Patolsky et al., Electrical detection of single viruses, Proc. Natl. Acad. Sci. 101:14017-14022 (2004) A. M. Armani et al., Label-free single molecule detection with optical...

    http://nanohub.org/resources/18851

  5. MAE 6291 Lecture 06: Single-Molecule Fluorescence, TIRF, FRET

    07 Jul 2013 | Online Presentations | Contributor(s): jonathan silver

    A. Jain et al., Probing cellular protein complexes using single-molecule pull-down. Nature 474: 484-489 (2012)

    http://nanohub.org/resources/18850

  6. [Illinois]: Big Mess

    26 Jun 2013 | Tools | Contributor(s): Bara Saadah

    This tool stimulates the pulse or step response of a neural network with ten input and ten output units that are randomly connected.

    http://nanohub.org/resources/bigmess

  7. [Illinois]: Posterior target probability given single-sensory input (delta rule)

    02 Jul 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Trains a single sigmoidal unit using the delta rule to estimate posterior target probability given sensory input of one modality (i.e., visual)

    http://nanohub.org/resources/unisensorydelta

  8. [Illinois]: Posterior probability of a target given single-sensory input (Bayes')

    28 Jun 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Computes the posterior probability of a target given sensory input of one modality (i.e., visual)

    http://nanohub.org/resources/unisensorybayes

  9. [Illinois]: Posterior probability of a target given input for two senses (Bayes')

    01 Jul 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Computes the posterior probability of a target given sensory input of two modalities (i.e., visual and auditory)

    http://nanohub.org/resources/bisensorybayes

  10. [Illinois]: Posterior probability of a target given input for two senses (delta)

    01 Jul 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Trains a single sigmoidal unit using the delta rule to estimate posterior target probability given sensory input of two modalities (i.e., visual and auditory)

    http://nanohub.org/resources/bisensorydelta

  11. [Illinois]: Posterior probabilities of hypothetical fish classes

    28 Jun 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Computes the posterior probabilities of each of three hypothetical fish classes using Bayes' rule

    http://nanohub.org/resources/fishbayesrule

  12. [Illinois]: Fish classification using back-propagation

    28 Jun 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Trains a three-layered network of sigmoidal units using back-propagation to classify fish according to their lengths

    http://nanohub.org/resources/fishbackprop

  13. [Illinois]: Avoidance Learn Simulation with 'Call' Neuron

    25 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, NanoBio Node, Jessica S Johnson

    This script simulates avoidance learning as a reinforcement learning with two upper motoneurons (sumo and fumo) and one "call" neuron.

    http://nanohub.org/resources/avoidlearncall

  14. [Illinois]: Avoidance Learn Simulation

    20 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, NanoBio Node, Jessica S Johnson

    This script simulates avoidance conditioning as reinforcement learning with two upper motoneurons (SUMO and FUMO).

    http://nanohub.org/resources/avoidlearn

  15. [Illinois]: Sigmoidal unit training with the delta rule

    26 Jun 2013 | Tools | Contributor(s): Lisa Sproat, NanoBio Node, Jessica S Johnson

    Uses the delta rule to train a single sigmoidal unit with feedback to simulate the responses of neurons in the parabigeminal nucleus

    http://nanohub.org/resources/pbndeltarule

  16. Hydrodynamic Particle Trapping

    14 Jun 2013 | Tools | Contributor(s): Melikhan tanyerim@illinois.edu Tanyeri, John Feser, Nahil Sobh

    Simulates the motion of a nanoparticle in a hydrodynamic trap.

    http://nanohub.org/resources/particletrap

  17. [Illinois]: Predictor-corrector simulation of parabigeminal nucleus neural responses

    24 Jun 2013 | Tools | Contributor(s): Lisa Sproat, NanoBio Node, Jessica S Johnson

    Implements a predictor-corrector simulation of the responses of neurons in the parabigeminal nucleus

    http://nanohub.org/resources/pbnpredict

  18. [Illinois]: Midbrain dopamine neuron responses to temporal-difference learning

    21 Jun 2013 | Tools | Contributor(s): Lisa Sproat, Jessica S Johnson, NanoBio Node

    Simulates the responses of midbrain dopamine neurons using temporal difference learning

    http://nanohub.org/resources/midbraindopamin

  19. [Illinois]: Velocity storage and leakage

    04 Jun 2013 | Tools | Contributor(s): Lisa L Sproat, Jessica S Johnson, NanoBio Node

    Implements the parallel-pathway and positive-feedback models of velocity storage, and the negative-feedback model of velocity leakage

    http://nanohub.org/resources/velstoreleak

  20. [Illinois]: Kohonen self-organizing map (SOM) algorithm

    21 Jun 2013 | Tools | Contributor(s): Bara Saadah, John Feser, NanoBio Node, Jessica S Johnson

    This too implements the Kohonen self-organizing map (SOM) algorithm

    http://nanohub.org/resources/tonotopicsom

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.