Tags: nano/bio

Resources (361-380 of 459)

  1. Molecular Workbench: An Interface to the Molecular World

    25 Jun 2006 | | Contributor(s):: Charles Xie

    The Molecular Workbench software is a free, open-source modeling and authoring program specifically designed for use in science education. Powered by a set of real-time molecular simulation engines that compute and visualize the motion of particles interacting through force fields, in both 2D...

  2. Nanotechnology in Biology

    29 Aug 2006 | | Contributor(s):: Elizabeth Gardner

    This is the first of two exercises developed by El Paso High School teachers as part of a two week workshop on nanotechnology education, part of the National Center for Learning and Teaching of Nanoscale Science and Engineering (NCLT) Professional Development Workshop held June 19-30, 2006 at...

  3. Information Theory and Cell/Nanoparticle Modeling

    03 Mar 2005 |

    Physico-chemical models of cells and nanoparticles are being developed for pure and applied studies. Nanoparticles are simulated by a Poisson-Boltzmann equation (for determining the electric force field in bioelectrolyte media) while an all atom-simulator is used to determine structure. Both...

  4. Three-Dimensional Simulations of Field Effect Sensors for DNA Detection

    03 Aug 2006 | | Contributor(s):: Eddie Howell, Gerhard Klimeck

    Here, the development of a DNA field-effect transistor (DNAFET) simulator is described. In DNAFETs the gate structure of a silicon on insulator (SOI) field-effect transistor is replaced by a layer of immobilized single-stranded DNA molecules which act as surface probe molecules. When...

  5. Chemical Modification of GaAs with TAT Peptide and Alkylthiol Self-Assembled Monolayers

    03 Aug 2006 | | Contributor(s):: Hamsa Jaganathan

    The use of self-assembled monolayers (SAM) on semiconductors creates a basis for the design and creation of bioelectronics, such as biosensors. The interface between the surface and an organic monolayer can change significant electrical and physiochemical properties of a biological device....

  6. Technique for High Spatial Resolution, Focused Electrical Stimulation for Electrically Excitable Tissue

    08 Aug 2006 | | Contributor(s):: Matteo Mannino

    Cochlear implant devices have made use of electrode pulses as a method of nerve fiber stimulation since their early conception. Electrode stimulation is limiting in both quality and consistency, and a new method is required if significant improvements to implant devices are to be made. By using...

  7. DNA Nanowires

    06 Aug 2006 | | Contributor(s):: Margarita Shalaev

    DNA is a relatively inexpensive and ubiquitous material that can be used as a scaffold for constructing nanowires. Our research focuses on the manufacturing of DNA-templated, magnetic nanowires. This is accomplished by synthesizing positively-charged metal nanoparticles that self-assemble along...

  8. Surface Analysis of Organic Monlayers Using FTIR and XPS

    02 Aug 2006 | | Contributor(s):: Jamie Nipple, Michael Toole, David Janes

    Current research concerning self-assembled monolayers (SAM) focuses on the fabrication of microelectronics utilizing a semiconductor/molecule/metal junction. This study seeks to investigate various experimental techniques for creation of organic monolayers by surface analysis techniques...

  9. A MATLAB code for Hartree Fock calculation of H-H ground state bondlength and energy using STO-4G

    08 Aug 2006 | | Contributor(s):: Amritanshu Palaria

    Hartree Fock (HF) theory is one of the basic theories underlying the current understanding of the electronic structure of materials. It is a simple non-relativistic treatment of many electron system that accounts for the antisymmetric (fermion) nature of electronic wavefunction but does not...

  10. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 |

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality, quantum confinement, the...

  11. Vector Free Energy Calculation with Adaptive Biasing Force

    18 Jun 2006 | | Contributor(s):: Eric F Darve

    This presentation discusses recent numerical methods to calculate thefree energy as a function of a reaction coordinate for bio-molecules.Free energy is often called potential of mean force and represents theeffective potential experienced by a generalized coordinate for abio-molecular system....

  12. First Principles-Based Modeling of materials: Towards Computational Materials Design

    20 Apr 2006 | | Contributor(s):: Alejandro Strachan

    Molecular dynamics (MD) simulations with accurate, first principles-based interatomic potentials is a powerful tool to uncover and characterize the molecular-level mechanisms that govern the chemical, mechanical and optical properties of materials. Such fundamental understanding is critical to...

  13. The Rush to Market, Lack of Knowledge, and Public Trust

    11 Apr 2006 |

    What should rivet our attention now is the rush to get nano products into the market long before the nanoscale phenomena these products exploit are understood. Nanoscale materials often present unusual structures and activities as compared to ordinary-scale amounts of the same material. Research...

  14. EDA Challenges in Nanoscale Design: A Synopsys Perspective

    11 Apr 2006 |

    Rich Goldman gives an overview of the current state ofthe semiconductor and EDA (Electronic Design Automation) industry with aspecial focus on the impact of nanometer scale design on design tools andthe economics of the industry.

  15. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    11 Apr 2006 | | Contributor(s):: Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent work in developing a comprehensive theoretical framework to describe the performance of these...

  16. Tutorial on Using Micelle-MD

    05 Apr 2006 | | Contributor(s):: Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a tutorial using Micelle-MD. This includes the main capabilities, computation procedure, with format of files generated, and the simulation setup, which includes the material models implemented.

  17. Mechanical Properties of Surfactant Aggregates at Water-Solid Interfaces

    05 Apr 2006 | | Contributor(s):: Patrick Chiu, Kunal Shah, Susan Sinnott

    This is a talk on the mechanical properties of surfactant aggregates at water-solid interfaces using Micelle-MD. This includes silica indentations of micelles with comparison to experimental data and graphite indentation of Micelle.

  18. Mark Ratner Interview on Nanotechnology

    23 Mar 2006 | | Contributor(s):: Mark Ratner, Krishna Madhavan

    Nanotechnology interview with Krishna Madhavan.

  19. Engineering Nanomedical Systems

    06 Mar 2006 | | Contributor(s):: James Leary

    This tutorial discusses general problems and approaches to the design of engineered nanomedical systems. One example given is the engineering design of programmable multilayered nanoparticles (PMNP) to control a multi-sequence process of targeting to rare cells in-vivo, re-targeting to...

  20. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...