Support

Support Options

Submit a Support Ticket

 

Tags: NanoBio Node

Resources (1-20 of 511)

  1. BioSensorLab

    14 Aug 2006 | Tools | Contributor(s): Pradeep R. Nair, Jonghyun Go, Graeme John Landells, Tejas Rajiv Pandit, Muhammad Alam, Xin Jin, Piyush Dak, Ankit Jain

    BioSensorLab is a tool to evaluate and predict the performance parameters of Biosensors.

    http://nanohub.org/resources/senstran

  2. cadnano to PDB File Converter

    13 Nov 2013 | Tools | Contributor(s): Jejoong Yoo, AbderRahman N Sobh, Chen-Yu Li, Aleksei Aksimentiev

    Accepts CadNano files in the form of *.json and outputs a file in *.pdb which can be read by programs such as VMD.

    http://nanohub.org/resources/cadnanocvrt

  3. DBR Laser Simulator

    07 Sep 2012 | Tools | Contributor(s): Nikhil Sancheti, Lynford Goddard, Christopher Adam Edwards

    Describes properties of a GaAs/AlGaAs DBR laser

    http://nanohub.org/resources/dbrlaser

  4. Hydrodynamic Particle Trapping

    14 Jun 2013 | Tools | Contributor(s): Melikhan tanyerim@illinois.edu Tanyeri, John Feser, Nahil Sobh

    Simulates the motion of a nanoparticle in a hydrodynamic trap.

    http://nanohub.org/resources/particletrap

  5. nanoDDSCAT

    23 Apr 2013 | Tools | Contributor(s): Jeremy Smith, Jacob Faucheaux, Sarah White, AbderRahman N Sobh, John Feser, Prashant K Jain, Nahil Sobh

    Calculate scattering and absorption of light by targets with arbitrary geometries and complex refractive index.

    http://nanohub.org/resources/dda

  6. nanoDDSCAT+

    13 Aug 2014 | Tools | Contributor(s): Nahil Sobh, AbderRahman N Sobh, Obaid Sarvana, John Feser, Prashant K Jain, Jacob Faucheaux, Jeremy Smith, Jeremy Smith, Sarah White

    Combines the Discrete Dipole Scattering (DDSCAT) tool with the DDAConvert tool for a single workflow for custom shapes.

    http://nanohub.org/resources/ddaplus

  7. Nanoindentation

    28 Oct 2013 | Tools | Contributor(s): Slim Kibech, AbderRahman N Sobh, Pratik Naik, Nahil Sobh, Iwona Jasiuk

    Nanoindentation for Mechanical Characterization of Soft Materials

    http://nanohub.org/resources/nanoindentation

  8. Nisin Diffusion Tool

    08 Apr 2013 | Tools | Contributor(s): Andrew Blanchard, Ting Lu

    Simulate cell fluorescence based on nisin concentration

    http://nanohub.org/resources/nisindiffusion

  9. Pattern Formation in Bacterial Populations

    03 May 2013 | Tools | Contributor(s): Ting Lu, John Feser, Nahil Sobh, Pratik Naik

    Synthetic biology tool for engineering patterning systems.

    http://nanohub.org/resources/patform

  10. [Illiniois]: SynchUp

    16 Jul 2013 | Tools | Contributor(s): Bara Saadah, Nahil Sobh, AbderRahman N Sobh, Jessica S Johnson, NanoBio Node

    This tool computes synchronous updates of autoassociative networks.

    http://nanohub.org/resources/synchup

  11. [Illinois] KohonenSOM

    09 Jul 2013 | Tools | Contributor(s): Bara Saadah, Nahil Sobh, Jessica S Johnson, NanoBio Node

    This tool implements the Kohonen self-organizing map (SOM) algorithm

    http://nanohub.org/resources/kohonensom

  12. [Illinois]: AsynchUp

    16 Jul 2013 | Tools | Contributor(s): Bara Saadah, Nahil Sobh, AbderRahman N Sobh, NanoBio Node, Jessica S Johnson

    This tool computes asynchronous updates of autoassociative networks.

    http://nanohub.org/resources/asynchup

  13. [Illinois]: Avoidance Learn Simulation

    20 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, NanoBio Node, Jessica S Johnson

    This script simulates avoidance conditioning as reinforcement learning with two upper motoneurons (SUMO and FUMO).

    http://nanohub.org/resources/avoidlearn

  14. [Illinois]: Avoidance Learn Simulation with 'Call' Neuron

    25 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, NanoBio Node, Jessica S Johnson

    This script simulates avoidance learning as a reinforcement learning with two upper motoneurons (sumo and fumo) and one "call" neuron.

    http://nanohub.org/resources/avoidlearncall

  15. [Illinois]: BUTDjointDistribution

    16 Jul 2013 | Tools | Contributor(s): Bara Saadah, Jessica S Johnson, NanoBio Node

    this tool simulates bottom-up/top-down processing in the visual system using the joint distribution

    http://nanohub.org/resources/butdjdist

  16. [Illinois]: BUTDprobInference

    17 Jul 2013 | Tools | Contributor(s): Bara Saadah, Jessica S Johnson, NanoBio Node

    This tool stimulates bottom-up/top-down processing in the visual system using probabilistic inference.

    http://nanohub.org/resources/butdprobinf

  17. [Illinois]: Direction Selectivity

    13 Jul 2013 | Tools | Contributor(s): Bara Saadah, Nahil Sobh, AbderRahman N Sobh, Jessica S Johnson, NanoBio Node

    This tool implements a simple direction selective network.

    http://nanohub.org/resources/dirselectivity

  18. [Illinois]: Error Gradient Estimations Due to Parallel Perturbation of Weights

    07 Jul 2013 | Tools | Contributor(s): AbderRahman N Sobh, Jessica S Johnson, NanoBio Node

    This tool trains two-layered networks of sigmoidal units to associate patterns using simultaneous perturbation of weights.

    http://nanohub.org/resources/pertgradll

  19. [Illinois]: Error Gradient Estimations Due to Perturbation of One Weight at a Time

    29 Jun 2013 | Tools | Contributor(s): AbderRahman N Sobh, Jessica S Johnson, NanoBio Node

    This tool trains two-layered networks of sigmoidal units to associate patterns using perturbation of one weight at a time.

    http://nanohub.org/resources/pertgrad1by1

  20. [Illinois]: Perturbative Reinforcement Learning to Develop Distributed Representations

    10 Jul 2013 | Tools | Contributor(s): AbderRahman N Sobh, Jessica S Johnson, NanoBio Node

    This tool trains three-layered networks of sigmoidal units to associate patterns.

    http://nanohub.org/resources/pertdistrep

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.