Tags: nano electro-mechanical systems

Description

Nano Electro-Mechanical Systems (NEMS) are tiny machines built at the nanometer scale. Current NEMS applications are simple machines, such as the tiny cantilever shown at the right. An electrical circuit measures the deflection of the lever. A larger version of this device, with dimensions at the micrometer or millimeter scale, is commonly used as an airbag sensor in automobiles. A sudden stop causes a strong deflection of the lever, which signals that the airbags should be deployed. At the nano scale, such a lever is sensitive enough to measure the weight of individual atoms or molecules resting upon it.

Learn more about NEMS from the resources available on this site, listed below.

Presentation Materials (1-10 of 10)

  1. Computational Nanofluidics

    08 Apr 2005 | | Contributor(s):: Narayan Aluru

    In this talk, I will present our recent results on computational analysis of electric field mediated transport of liquids and electrolytes in nanochannels.

  2. Computational Studies of Confined & Externally Flowing Gases on the Mechanical Properties of Carbon

    08 Apr 2005 | | Contributor(s):: Susan Sinnott

    Historically, molecular dynamics simulations have played an important role in elucidating the mechanical responses of carbon nanotubes to external forces. Here, they are used to explore the interactions of carbon nanotubes with gases that are either confined to the nanotube interiors or are...

  3. Electrochemical Gating and Molecular Adsorption on Carbon Nanotubes

    08 Apr 2005 |

    Highly sensitive response of semiconducting single-walled carbon naotubes (SWNTs) to molecular adsorption provides a simple and effective direction in exploiting their unique electrical properties. For example, simultaneous doping and nearly ideal gate efficiencies are achieved with polymer...

  4. Gated Chemical Transport through Vertically Aligned Carbon Nanotube Membranes

    08 Apr 2005 |

    A promising architecture for ion-channel mimetics is a composite membrane structure containing vertically aligned carbon nanotubes, with inner core diameters of 7 nm, passing across a polystyrene matrix film. Plasma oxidation during the fabrication process introduces carboxylic acid groups on the...

  5. Simulation of Multi-Technology Micro and Nano Systems

    08 Apr 2005 | | Contributor(s):: Kartikeya Mayaram

    The simulation of a mixed-technology micro or nano system is an extremely challenging task because of the different types of on-chip components for sensing, actuation, data storage, and information processing. Integrated circuit and device simulators are a promising approach for simulating such...

  6. Simulation of Sub-Micron Thermal Transport in Semi-Conduction and Dielectrics

    08 Apr 2005 | | Contributor(s):: Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications have included the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. More recently,...

  7. Synthesis & Mechanics of Nanostructures & Nanocomposites

    08 Apr 2005 | | Contributor(s):: Rod Ruoff

    Synthesis & Mechanics of Nanostructures & Nanocomposites

  8. System Approach to Control Cells

    08 Apr 2005 |

    Nature has evolved extremely intelligent and complex adaptive systems for driving the processes of everyday life. For example, a cell fuses genetic processes with nanoscale sensors and actuators to result in perhaps one of the most efficient autonomous micro “factories". These basic processes...

  9. Thermal Conductance of solid-Solid and Solid-Liquid Interfaces

    08 Apr 2005 | | Contributor(s):: David Cahill

    The thermal conductance of interfaces is a key factor in controlling thermal conduction in nanostructured materials, composites, and individual nanostructures. We have recently advanced the state-of-the-art of time-domain-thermoreflectance (TDTR) measurements of thermal transport and are using...

  10. Unraveling the Behavior of Liquids at the Nanoscale

    08 Apr 2005 |

    To better understand the transport of simple and complex liquids under extreme confinement conditions, our research group is conducting fluid flow experiments in conduits consisting of carbon nanotubes. Carbon nanotubes are a convenient material with which to work for several reasons. First,...