Tags: nano electro-mechanical systems

Description

Nano Electro-Mechanical Systems (NEMS) are tiny machines built at the nanometer scale. Current NEMS applications are simple machines, such as the tiny cantilever shown at the right. An electrical circuit measures the deflection of the lever. A larger version of this device, with dimensions at the micrometer or millimeter scale, is commonly used as an airbag sensor in automobiles. A sudden stop causes a strong deflection of the lever, which signals that the airbags should be deployed. At the nano scale, such a lever is sensitive enough to measure the weight of individual atoms or molecules resting upon it.

Learn more about NEMS from the resources available on this site, listed below.

Resources (81-100 of 124)

  1. Introduction to Carbon Nanotube Electronics

    12 Oct 2005 | | Contributor(s):: Susan Sinnott

    Carbon nanotubes (CNT) have interesting, structure-dependent electronic properties. In particular, CNTs can be a metallic or semiconducting depending on the way in which the carbon atoms are arranged in the CNT walls. The purpose of this learning module is to familiarize students with the basic...

  2. Modeling and Simulation of Sub-Micron Thermal Transport

    26 Sep 2005 | | Contributor(s):: Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. It is now accepted that...

  3. Nanostructure Engineered Sensors for Gas Detection in Space and Terrestrial Applications

    28 Jul 2005 | | Contributor(s)::

    A nanosensor technology has been developed using single walled carbon nanotubes (SWNTs) on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. These sensors have been exposed to nitrogen dioxide, methane, acetone, benzene,...

  4. Organic Electronics Part I: Chemical Modulation

    27 Jul 2005 | | Contributor(s)::

    Organic semiconductors (OS) have been in the center of attention in at least two areas: in chemical ,sensors and in molecular electronics. Although the chemistry and physics governing them is the same their performance characteristics are apparently measured on different scales. Electrochemical...

  5. Fine Tuning Microcantilever Vibrations for Ultrasensitive Analyte Mass Detection

    27 Jul 2005 | | Contributor(s):: Arvind Raman

    Microcantilever based biochemical sensing has shown tremendous promise for ultrasenstive detection in both liquid and ambient conditions. However improving the sensitivity, reliability and robustness of these sensors so they can achieve their potential needs substantial efforts in (a) chemical...

  6. A Novel Diagnostic Assay Based On Nanomechanics

    28 Jul 2005 | | Contributor(s)::

    Micro-fabricated silicon cantilevers arrays offer a novel label-free approach where ligand-receptor binding interactions occurring on the sensor generate nanomechanical signals like bending or a change in mass that is optically detected in-situ. We report the detection of multiple unlabelled...

  7. Introduction to BioMEMS and Bionanotechnology

    27 Jul 2005 | | Contributor(s):: Rashid Bashir

    BioMEMS and Bionanotechnology have the potential to make significant impact in a wide range of fields and applications. This lecture series introduces the basic concepts and topics underlying the interdisciplinary areas of BioMEMS and Bionanotechnology. Advances in this field require the...

  8. 2004 Computational Materials Science Summer School

    07 Jun 2004 |

    This short course will explore a range of computational approaches relevant for nanotechnology.

  9. Computational Methods for NEMS

    16 Jun 2004 | | Contributor(s):: Narayan Aluru

    Computational Methods for NEMS

  10. Nanofluidics

    15 Jun 2004 | | Contributor(s):: Susan Sinnott

    Nanofluidics

  11. Sensing Technology Needs in Long-Term Human Space Exploration

    27 Jul 2005 | | Contributor(s)::

    The sensing technologies are mainly derived from three broad areas, namely, absorbance, fluorescence and electrochemical. The development of a sensing system with unique requirements for space applications in these areas will be addressed. The application of these sensing systems in Tissue...

  12. Introduction to Molecular Conduction

    21 Jul 2005 | | Contributor(s):: Ferdows Zahid, Magnus Paulsson, Avik Ghosh, Supriyo Datta

    A scanning probe microscope brushes the tips of molecules rising up from a gold substrate. After making contact, the probe measures a very strange current-voltage relationship--linear portions separated by flat spots or sharp increases. Definitely not Ohm's law. Is the experiment correct?...

  13. 2005 Molecular Conduction and Sensors Workshop

    27 Jul 2005 |

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL (2004). The workshop has been an informal and open venue for discussing new results, key challenges, and...

  14. An Introduction to BioMEMS and Bionanotechnology

    07 Feb 2005 | | Contributor(s):: Rashid Bashir

    This lecture series introduces the basic concepts and key topics underlying the interdisciplinary areas of BioMEMS and Bionanotechnology. Advances in this field require the knowledge of polymer processing and soft lithography in addition to knowledge of silicon-inspired fabrication. Since the...

  15. Synthesis & Mechanics of Nanostructures & Nanocomposites

    08 Apr 2005 | | Contributor(s):: Rod Ruoff

    Synthesis & Mechanics of Nanostructures & Nanocomposites

  16. Unraveling the Behavior of Liquids at the Nanoscale

    08 Apr 2005 | | Contributor(s)::

    To better understand the transport of simple and complex liquids under extreme confinement conditions, our research group is conducting fluid flow experiments in conduits consisting of carbon nanotubes. Carbon nanotubes are a convenient material with which to work for several reasons. First,...

  17. Thermal Conductance of solid-Solid and Solid-Liquid Interfaces

    08 Apr 2005 | | Contributor(s):: David Cahill

    The thermal conductance of interfaces is a key factor in controlling thermal conduction in nanostructured materials, composites, and individual nanostructures. We have recently advanced the state-of-the-art of time-domain-thermoreflectance (TDTR) measurements of thermal transport and are using...

  18. System Approach to Control Cells

    08 Apr 2005 | | Contributor(s)::

    Nature has evolved extremely intelligent and complex adaptive systems for driving the processes of everyday life. For example, a cell fuses genetic processes with nanoscale sensors and actuators to result in perhaps one of the most efficient autonomous micro “factories". These basic processes...

  19. Simulation of Sub-Micron Thermal Transport in Semi-Conduction and Dielectrics

    08 Apr 2005 | | Contributor(s):: Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications have included the thermal performance of microelectronic devices, thermo-electric energy conversion, ultra-fast laser machining and many others. More recently,...

  20. Simulation of Multi-Technology Micro and Nano Systems

    08 Apr 2005 | | Contributor(s):: Kartikeya Mayaram

    The simulation of a mixed-technology micro or nano system is an extremely challenging task because of the different types of on-chip components for sensing, actuation, data storage, and information processing. Integrated circuit and device simulators are a promising approach for simulating such...