Please help us continue to improve nanoHUB operation and service by completing our survey - http://bit.ly/nH-survey14. Thank you - we appreciate your time. close

Support

Support Options

Submit a Support Ticket

 

Tags: nanoelectronics

Description

Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Resources (1-20 of 1742)

  1. Drift Diffusion Video Demonstration

    24 Jun 2014 | Animations | Contributor(s): Saumitra Raj Mehrotra, Lynn Zentner, Joseph M. Cychosz

    This video shows the use of the Drift-Diffusion Lab to simulate drift and diffusion carrier mechanisms in a semiconductor. The examples demonstrated will be helpful to a first time user in...

    http://nanohub.org/resources/10114

  2. In-situ carbon nanotube tensile test

    07 Oct 2011 | Animations | Contributor(s): Brian Demczyk

    This represents the first in-situ tensile test observed in a transmission electron microscope.

    http://nanohub.org/resources/12256

  3. Quantum Dot Wave Function (Quantum Dot Lab)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The animation sequence shows various electronic states in an Indium Arsenide (InAs)/Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10751

  4. Self-Assembled Quantum Dot Structure (pyramid)

    02 Feb 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    Pyramidal InAs Quantum dot. The quantum dot is 27 atomic monolayers wide at the base and 15 atomic monolayers tall.

    http://nanohub.org/resources/10730

  5. Quantum Dot Wave Function (still image)

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, David S. Ebert, Wei Qiao

    Electron density of an artificial atom. The image shown displays the excited electron state in an Indium Arsenide (InAs) / Gallium Arsenide (GaAs) self-assembled quantum dot.

    http://nanohub.org/resources/10692

  6. Self-Assembled Quantum Dot Wave Structure

    31 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Insoo Woo, Muhammad Usman, David S. Ebert

    A 20nm wide and 5nm high dome shaped InAs quantum dot grown on GaAs and embedded in InAlAs is visualized.

    http://nanohub.org/resources/10689

  7. Electron Density in a Nanowire

    30 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Saumitra Raj Mehrotra

    Electron Density in a circular Silicon nanowire transistor.

    http://nanohub.org/resources/10666

  8. Tunneling in an Nanometer-Scaled Transistor

    25 Jan 2011 | Animations | Contributor(s): Gerhard Klimeck, Mathieu Luisier, Neerav Kharche, George A. Howlett, Insoo Woo, David Ebert

    Electrons tunneling through the gate of an ultra-scaled transistor.

    http://nanohub.org/resources/10537

  9. Crystal Viewer Tool Video Demonstration

    14 Dec 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Lynn Zentner, Joseph M. Cychosz

    This video shows the use of the Crystal Viewer Tool to visualize several material/crystal systems. The examples demonstrated will provide a first-time user with a basic understanding of how the...

    http://nanohub.org/resources/10113

  10. Carrier Statistics Lab Video Demonstration

    23 Sep 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra

    This video shows: Basic input deck for the tool, Simulation run of Temperature sweep with constant fermi level, Simulation run of Temperature sweep with constant doping.

    http://nanohub.org/resources/9758

  11. InAs: Evolution of iso-energy surfaces for heavy, light, and split-off holes due to uniaxial strain.

    25 May 2010 | Animations | Contributor(s): Abhijeet Paul, Denis Areshkin, Gerhard Klimeck

    Movie was generated using Band Structure Lab tool at nanoHUB and allows to scan over four parameters: Hole energy measured from the top of the corresponding band (i.e. the origin of energy...

    http://nanohub.org/resources/9016

  12. Carbon nanotube bandstructure

    22 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure, and can be categorized into single-walled nanotubes (SWNT) and multi-walled nanotubes (MWNT). These cylindrical carbon ...

    http://nanohub.org/resources/8807

  13. Threshold voltage in a nanowire MOSFET

    22 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, SungGeun Kim, Gerhard Klimeck

    Threshold voltage in a metal oxide semiconductor field-effect transistor (better known as a MOSFET) is usually defined as the gate voltage at which an inversion layer forms at the interface...

    http://nanohub.org/resources/8803

  14. Resonant Tunneling Diode operation

    22 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    A resonant tunneling diode (RTD) is a type of diode with a resonant tunneling structure that allows electrons to tunnel through various resonant states at certain energy levels. RTDs can be...

    http://nanohub.org/resources/8799

  15. CV profile with different oxide thickness

    20 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    C-V (or capacitance-voltage) profiling refers to a technique used for the characterization of semiconductor materials and devices. C-V testing is often used during the characterization process to...

    http://nanohub.org/resources/8818

  16. PN junction in forward bias

    17 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    A PN junction is formed by joining p-type and n-type doped semiconductors together in very close contact. The p- and n-type semiconductors are conducting because of the available free carriers....

    http://nanohub.org/resources/8797

  17. Local density of states

    17 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    The concept of general density of states (DOS) in devices is, by definition, spatially invariant. However, in the case of inhomogeneous materials or in quantum confined structures, the density of...

    http://nanohub.org/resources/8801

  18. Graphite

    17 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Graphene sheets are weakly bonded to other graphene layers above and...

    http://nanohub.org/resources/8795

  19. Graphene nanoribbon bandstructure

    17 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    Graphene nanoribbons (often abbreviated as GNR) are planar strips of graphene with a thickness of approximately one atom. Carbon atoms in graphene are sp2-hybridized with a carbon-carbon bond...

    http://nanohub.org/resources/8810

  20. Buckyball C60

    16 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    A fullerene is any molecule composed entirely of carbon, and can take the form of hollow spheres, ellipsoids, or tubes. Spherical fullerenes (often referred to as "buckyballs") are one of the...

    http://nanohub.org/resources/8793

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.