Support

Support Options

Submit a Support Ticket

 

Tags: nanoelectronics

Description

Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Resources (1-20 of 1741)

  1. Ballistic Nanotransistors - Learning Module

    07 Dec 2005 | Learning Modules | Contributor(s): Mark Lundstrom

    This resource is an introduction to the theory ballistic nanotransistors. No transistor is fully ballistic, but analyzing nanotransistors by neglecting scattering processes provides new insights...

    http://nanohub.org/resources/612

  2. Bandstructure of Carbon Nanotubes and Nanoribbons

    14 Jun 2007 | Learning Modules | Contributor(s): James K Fodor, Seokmin Hong, Jing Guo

    This learning module introduces users to the Carbon-Nano Bands simulation tool, which simulates the bandstructure of Carbon Nanotubes (CNTs) and Nanoribbons (CNRs). To gives users a strong...

    http://nanohub.org/resources/2762

  3. Introduction to Carbon Nanotube Electronics

    12 Oct 2005 | Learning Modules | Contributor(s): Susan Sinnott

    Carbon nanotubes (CNT) have interesting, structure-dependent electronic properties. In particular, CNTs can be a metallic or semiconducting depending on the way in which the carbon atoms are...

    http://nanohub.org/resources/231

  4. Introduction to CNTbands

    28 Jun 2007 | Learning Modules | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the CNTbands simulator. A brief introduction to CNTbands is presented, followed by voiced presentations featuring the simulator in action. Upon...

    http://nanohub.org/resources/2843

  5. Introduction to FETToy

    03 Jul 2007 | Learning Modules | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the FETToy simulator. A brief introduction to FETToy is presented, followed by voiced presentations featuring the simulator in action. Upon...

    http://nanohub.org/resources/2844

  6. Introduction to Molecular Conduction

    21 Jul 2005 | Learning Modules | Contributor(s): Ferdows Zahid, Magnus Paulsson, Avik Ghosh, Supriyo Datta

    A scanning probe microscope brushes the tips of molecules rising up from a gold substrate. After making contact, the probe measures a very strange current-voltage relationship--linear portions...

    http://nanohub.org/resources/8

  7. Introduction to nanoMOS

    02 Jul 2007 | Learning Modules | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the nanoMOS simulator. A brief introduction to nanoMOS is presented, followed by voiced presentations featuring the simulator in action. Upon...

    http://nanohub.org/resources/2845

  8. Introduction to Schred

    28 Jun 2007 | Learning Modules | Contributor(s): James K Fodor, Jing Guo

    This learning module introduces nanoHUB users to the Schred simulator. A brief introduction to Schred is presented, followed by voiced presentations featuring the simulator in action. Upon...

    http://nanohub.org/resources/2847

  9. Modeling Single and Dual-Gate Capacitors using SCHRED

    31 Mar 2006 | Learning Modules | Contributor(s): Dragica Vasileska

    SCHRED stands for self-consistent solver of the 1D Poisson and 1D effective mass Schrodinger equation as applied to modeling single gate or dual-gate capacitors. The program incorporates many...

    http://nanohub.org/resources/1148

  10. PN Junction Theory and Modeling

    14 Sep 2005 | Learning Modules | Contributor(s): Dragica Vasileska

    This set of lecture notes is intended to help students learn the basics of PN junction theory and modeling.

    http://nanohub.org/resources/68

  11. Quantum Dot Lab Learning Module: An Introduction

    02 Jul 2007 | Learning Modules | Contributor(s): James K Fodor, Jing Guo

    THIS MATERIAL CORRESPONDS TO AN OLDER VERSION OF QUANTUM DOT LAB THAN CURRENTLY AVAILABLE ON nanoHUB.org.

    http://nanohub.org/resources/2846

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.