Tags: nanoelectronics


Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Presentation Materials (21-25 of 25)

  1. Quantum Dots Visualization Software using Electron Wave Function

    15 Aug 2004 | | Contributor(s):: Patrick Macnamara, Laurie St. Ange

    The viewing of electron orbitals is a necessary element in the investigation of quantum dot structures as well as in their conceptualization. With an electron wave function superimposed over a crystalline quantum dot structure containing a million to three million atoms, we adapted the marching...

  2. Quantum Transport: Atom to Transistor - Questions & Answers

    23 Mar 2005 | | Contributor(s):: Supriyo Datta

    Welcome to the Question and Answer page for the online class Quantum Transport: Atom to Transistor.

  3. Simulating Electronic Conduction Through the NanoHub

    09 Jul 2003 | | Contributor(s):: Sebastien Goasguen

    Simulating Electronic Conduction Through the nanoHUB

  4. Visualization of and Educational Tool for Quantum Dots

    15 Aug 2004 | | Contributor(s):: Aaron Christensen, Adrian Rios

    Quantum dots (QDs) are confined structures made of metals and semiconductors that are capable of containing free electrons.The ability to visualize these small devices is advantageous in determining probable electron orbitals and in observing information not easily conceived in raw datasets.

  5. Visualization of CNT FET Electrical Field Lines

    15 Aug 2004 | | Contributor(s):: Muriel Fort, Sameer Hamdan

    With transistors decreasing to nanometric dimensions, limits of current processing technologies are being reached. Many physical obstacles still need to be overcome to replace earlier silicon devices with Carbon NanoTube Field Effect Transistors (CNT FETs).