On Monday July 6th, the nanoHUB will be intermittently unavailable due to scheduled maintenance. We apologize for any inconvenience this may cause. close

Support

Support Options

Submit a Support Ticket

 

Tags: nanoelectronics

Description

Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Resources (1701-1720 of 1748)

  1. SEQUAL 2.1 Source Code Download

    09 Mar 2005 | Downloads | Contributor(s): Michael McLennan

    SEQUAL 2.1 is a device simulation program that computes Semiconductor Electrostatics by Quantum Analysis. Given a device, SEQUAL will compute the electron density and the current density using a...

    http://nanohub.org/resources/104

  2. Schred Source Code Download

    09 Mar 2005 | Downloads | Contributor(s): Dragica Vasileska, Zhibin Ren

    Schred 2.0 calculates the envelope wavefunctions and the corresponding bound-state energies in a typical MOS (Metal-Oxide-Semiconductor) or SOS (Semiconductor-Oxide- Semiconductor) structure and a...

    http://nanohub.org/resources/106

  3. Nanotechnology 501 Lecture Series

    22 Feb 2005 | Series | Contributor(s): Gerhard Klimeck (editor), Mark Lundstrom (editor), Joseph M. Cychosz (editor)

    Welcome to Nanotechnology 501, a series of lectures designed to provide an introduction to nanotechnology. This series is similar to our popular lecture series Nanotechnology 101, but it is...

    http://nanohub.org/resources/102

  4. NanoMOS 2.5 Source Code Download

    22 Feb 2005 | Downloads | Contributor(s): Zhibin Ren, Sebastien Goasguen

    NanoMOS is a 2-D simulator for thin body (less than 5 nm), fully depleted, double-gated n-MOSFETs. A choice of five transport models is available (drift-diffusion, classical ballistic, energy...

    http://nanohub.org/resources/110

  5. Measuring Molecular Conductance: A Review of Experimental Approaches

    09 Jul 2003 | Online Presentations | Contributor(s): Ron Reifenberger

    Measuring Molecular Conductance: A Review of Experimental Approaches

    http://nanohub.org/resources/143

  6. Electrical Resistance: An Atomistic View

    09 Jul 2003 | Online Presentations | Contributor(s): Supriyo Datta

    Electrical Resistance: An Atomistic View

    http://nanohub.org/resources/144

  7. Huckel-IV on the nanoHub

    09 Jul 2003 | Online Presentations | Contributor(s): Magnus Paulsson, Ferdows Zahid, Supriyo Datta

    Huckel-IV on the nanoHub

    http://nanohub.org/resources/422

  8. Simulating Electronic Conduction Through the NanoHub

    09 Jul 2003 | Presentation Materials | Contributor(s): Sebastien Goasguen

    Simulating Electronic Conduction Through the nanoHUB

    http://nanohub.org/resources/423

  9. Understanding Molecular Conduction

    08 Jul 2004 | Online Presentations | Contributor(s): Supriyo Datta

    It is common to differentiate between two ways of building a nanodevice: a topdown approach where we start from something big and chisel out what we want and a bottom-up approach where we start...

    http://nanohub.org/resources/495

  10. Quantum Chemistry Part I

    08 Jul 2004 | Online Presentations | Contributor(s): Mark A. Ratner

    This tutorial will provide an overview of electronic structure calculations from a chemist's perspective. This will include a review of the basic electronic structure theories.

    http://nanohub.org/resources/496

  11. Probing Molecular Conduction with Scanning Probe Microscopy

    08 Jul 2004 | Online Presentations | Contributor(s): Mark Hersam

    This tutorial will provide an overview of scanning probe microscopy (SPM) and its application towards problems in molecular conduction. In an effort to communicate the power and limitations of...

    http://nanohub.org/resources/497

  12. Curriculum on Nanotechnology

    27 Jan 2005 | Courses

    To exploit the opportunities that nanoscience is giving us, engineers will need to learn how to think about materials, devices, circuits, and systems in new ways. The NCN seeks to bring the new...

    http://nanohub.org/resources/100

  13. Exponential Challenges, Exponential Rewards - The Future of Moore's Law

    14 Dec 2004 | Online Presentations | Contributor(s): Shekhar Borkar

    Three exponentials have been the foundation of today's electronics, which are often taken for granted—namely transistor density, performance, and energy. Moore's Law captures the impact of...

    http://nanohub.org/resources/177

  14. NEMO 1-D: The First NEGF-based TCAD Tool and Network for Computational Nanotechnology

    28 Dec 2004 | Online Presentations | Contributor(s): Gerhard Klimeck

    Nanotechnology has received a lot of public attention since U.S. President Clinton announced the U.S. National Nanotechnology Initiative. New approaches to applications in electronics,...

    http://nanohub.org/resources/178

  15. Nanotechnology 101 Lecture Series

    25 Aug 2004 | Series

    Welcome to Nanotechnology 101, a series of lectures designed to provide an undergraduate-level introduction to nanotechnology. In contrast, the Nanotechnology 501 series offers lectures for the...

    http://nanohub.org/resources/101

  16. Electronic Transport in Semiconductors (Introductory Lecture)

    25 Aug 2004 | Online Presentations | Contributor(s): Mark Lundstrom

    Welcome to the ECE 656 Introductory lecture. The objective of the course is to develop a clear, physical understanding of charge carrier transport in bulk semiconductors and in small semiconductor...

    http://nanohub.org/resources/169

  17. Process Variation: An Evalution of Carbon Nanotube Transistor Field Effect Transistors

    16 Aug 2004 | Presentation Materials | Contributor(s): Sergio Urban, Alvin Lacson, Louis Bonhami

    Process variation is the observed deviation of device parameters in mass production processes. As the critical dimensions of today's MOSFET's are continously decreasing, process variation is...

    http://nanohub.org/resources/751

  18. Modification of Si(111) Surfaces using Self - Assembled Monolayers (SAMs) for Electrochemical and AF

    16 Aug 2004 | Presentation Materials | Contributor(s): Rosangelly Flores Pérez

    Recent researchers in the electrical engineering field are using self-assembled monolayers techniques with aryldiazonium salts solutions to build nanoelectronic devices. This innovation can...

    http://nanohub.org/resources/749

  19. Hydrodynamic Separation of Micron-sized Particles through Magnetization

    16 Aug 2004 | Presentation Materials | Contributor(s): Michael Benko

    Many assays and lab-on-a-chip projects require the use of uniform magnetic particles. Creating magnetic particles of uniform size and magnetization is a difficult task. The next best alternative...

    http://nanohub.org/resources/746

  20. Visualization of CNT FET Electrical Field Lines

    15 Aug 2004 | Presentation Materials | Contributor(s): Muriel Fort, Sameer Hamdan

    With transistors decreasing to nanometric dimensions, limits of current processing technologies are being reached. Many physical obstacles still need to be overcome to replace earlier silicon...

    http://nanohub.org/resources/745

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.