Tags: nanoelectronics

Description

Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Series (21-40 of 42)

  1. NCN Nanoelectronics: Research Seminars

    28 Nov 2007 |

    Many research seminars are available on the nanoHUB. Listed below are a few that discuss new device possiblities.

  2. NCN Nanoelectronics: Simulation Tools for Education

    28 Nov 2007 |

    Many simulation tools are available on the nanoHUB. The tools have been well-tested and here include supporting materials so that they can be effectively used for education or intelligently used for research. The educational tools include example a first time users guide and example homework...

  3. NCN Nanoelectronics: Simulation Tools for Research

    28 Nov 2007 |

    Many simulation tools are available on the nanoHUB. The tools have been well-tested and here include supporting materials so that they can be effectively used for education or intelligently used for research. The research tools include a first time users guide and supporting publications and...

  4. NCN Nanoelectronics: Tutorials

    28 Nov 2007 |

    From among the many tutorial lectures available on the nanoHUB, we list a few that convey new approaches to electronics.

  5. New Frontiers in Nanocomputing

    03 Nov 2005 |

    Welcome to Frontiers in Nanocomputing, a seminar series that focuseson systems issues for nanoelectronics. Our topic was FundamentalLimits of Digital Computation. The questions to each speaker were: Whatare the fundamental limits? How close are we to those limits? Howrelevant are they to real...

  6. PN Junction Theory and Modeling

    14 Sep 2005 | | Contributor(s):: Dragica Vasileska

    This set of lecture notes is intended to help students learn the basics of PN junction theory and modeling.

  7. Process Modeling

    23 Aug 2011 | | Contributor(s):: Dragica Vasileska

    This series on process modeling describes key process modeling steps such as implantation, diffusion, oxidation, etching, deposition, etc.

  8. Quantum Dot Lab Learning Module: An Introduction

    02 Jul 2007 | | Contributor(s):: James K Fodor, Jing Guo

    THIS MATERIAL CORRESPONDS TO AN OLDER VERSION OF QUANTUM DOT LAB THAN CURRENTLY AVAILABLE ON nanoHUB.org.

  9. Quantum Mechanics for Engineers: Podcasts

    07 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck, David K. Ferry

    This course will introduce the students to the basic concepts and postulates of quantum mechanics. Examples will include simple systems such as particle in an infinite and finite well, 1D and 2D harmonic oscillator and tunneling. Numerous approximation techniques, such as WKB method,...

  10. Quantum Mechanics: Harmonic Oscillator

    09 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    The quantum harmonic oscillator is the quantum mechanical analogue of the classical harmonic oscillator. It is one of the most important model systems in quantum mechanics because an arbitrary potential can be approximated as a harmonic potential at the vicinity of a stable equilibrium point....

  11. Quantum Mechanics: Hydrogen Atom and Electron Spin

    09 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively-charged proton and a single negatively-charged electron bound to the nucleus by the Coulomb force. The most abundant isotope, hydrogen-1, protium, or light hydrogen, contains...

  12. Quantum Mechanics: Introductory Concepts

    07 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck, David K. Ferry

    In this section of the Quantum Mechanics class we discuss the particle-wave duality and the need for the quantization of energy to explain the black-body radiation and the photoelectric effect. We provide reading material, slides and video, which in a very illustrative way, explain the most...

  13. Quantum Mechanics: Landauer's Formula

    08 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    When a metallic nanojunction between two macroscopic electrodes is connected to a battery, electrical current flows across it. The battery provides, and maintains, the charge imbalance between the electrode surfaces needed to sustain steady-state conduction in the junction. This static...

  14. Quantum Mechanics: Periodic Potentials and Kronig-Penney Model

    09 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    The Kronig-Penney model is a simple approximation of a solid. The potential consists of a periodic arrangement of delta functions, square well or Coulomb well potentials. By means of epitaxial growth techniques artificial semiconductor superlattices can be realized, which behave very similar to...

  15. Quantum Mechanics: Postulates

    07 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    A physical system is generally described by three basic ingredients: states; observables; and dynamics (or law of time evolution) or, more generally, a group of physical symmetries. A classical description can be given in a fairly direct way by a phase space model of mechanics: states are points...

  16. Quantum Mechanics: Stationary Perturbation Theory

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    Stationary perturbation theory is concerned with finding the changes in the discrete energy levels and the changes in the corresponding energy eigenfunctions of a system, when the Hamiltonian of a system is changed by a small amount. In this section we provide reading material regarding...

  17. Quantum Mechanics: Time Independent Schrodinger Wave Equation

    07 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    In physics, especially quantum mechanics, the Schrödinger equation is an equation that describes how the quantum state of a physical system changes in time. It is as central to quantum mechanics as Newton's laws are to classical mechanics.In the standard interpretation of quantum mechanics, the...

  18. Quantum Mechanics: Time-Dependent Perturbation Theory

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    Time-dependent perturbation theory, developed by Paul Dirac, studies the effect of a time-dependent perturbation V(t) applied to a time-independent Hamiltonian H0. Since the perturbed Hamiltonian is time-dependent, so are its energy levels and eigenstates. Therefore, the goals of time-dependent...

  19. Quantum Mechanics: Tunneling

    08 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    In quantum mechanics, quantum tunnelling is a micro nanoscopic phenomenon in which a particle violates the principles of classical mechanics by penetrating a potential barrier or impedance higher than the kinetic energy of the particle. A barrier, in terms of quantum tunnelling, may be a form of...

  20. Quantum Mechanics: Wavepackets

    07 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    In physics, a wave packet is an envelope or packet containing an arbitrary number of wave forms. In quantum mechanics the wave packet is ascribed a special significance: it is interpreted to be a "probability wave" describing the probability that a particle or particles in a particular state...