Tags: nanoelectronics

Description

Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Teaching Materials (301-320 of 408)

  1. BJT Problems and PADRE Exercise

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This set of problems makes the students familiar with h-parameters and they also teach them how to write the input deck for simulation of BJT device to obtain the Gummel plot, the output characteristics and to extract the h-parameters. Also here, students are taught how to treat current contacts...

  2. Computational Electronics

    07 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck, Stephen M. Goodnick

    As semiconductor feature sizes shrink into the nanometer scale regime, device behavior becomes increasingly complicated as new physical phenomena at short dimensions occur, and limitations in material properties are reached. In addition to the problems related to the actual operation of...

  3. Reading Material: Stationary Perturbation Theory

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska

    www.eas.asu.edu/~vasileskNSF

  4. Reading Material: Examples and Stark Effect

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska

    www.eas.asu.edu/~vasileskNSF

  5. Slides: Stationary Perturbation Theory

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, David K. Ferry

    www.eas.asu.edu/~vasileskNSF

  6. Slides: Examples and Stark Effect

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, David K. Ferry

    www.eas.asu.edu/~vasileskNSF

  7. Slides: Zeeman Splitting

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  8. Quantum Mechanics: Homework on Stationary Perturbation Theory

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  9. Reading Material: Time-Dependent Perturbation Theory

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska

    www.eas.asu.edu/~vasileskNSF

  10. Slides: Time-Dependent Perturbation Theory

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, David K. Ferry

    www.eas.asu.edu/~vasileskNSF

  11. Time-Dependent Perturbation Theory: an Exercise

    10 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  12. Computational Electronics HW - Simplified Band Structure Model

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  13. Computational Electronics HW - Bandstructure Calculation

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  14. Computational Electronics HW - DOS and Fermi Golden Rule

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  15. Computational Electronics HW - Drift-Diffusion Equations

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  16. Computational Electronics HW - Finite Difference Discretization of Poisson Equation

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  17. Computational Electronics HW - Scharfetter-Gummel Discretization

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  18. Computational Electronics HW - Mobility Models

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  19. Computational Electronics HW - Linearization of Poisson Equation

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF

  20. Computational Electronics HW - Scattering Mechanisms

    11 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    www.eas.asu.edu/~vasileskNSF