Support

Support Options

Submit a Support Ticket

 

Tags: nanoelectronics

Description

Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

Resources (141-160 of 1742)

  1. CNTphonons

    30 May 2006 | Tools | Contributor(s): Marcelo Alejandro Kuroda, Salvador Barraza-Lopez, J. P. Leburton

    Calculates the phonon band structure of carbon nanotubes using the force constant method.

    http://nanohub.org/resources/cntphonons

  2. Nanowire

    19 May 2006 | Tools | Contributor(s): Hong-Hyun Park, Lang Zeng, Matthew Buresh, Siqi Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Clemens Heitzinger, Benjamin P Haley

    Simulate 3D nanowire transport in the effective mass approximation with phonon scattering and 3D Poisson self-consistent solution

    http://nanohub.org/resources/nanowire

  3. Band Structure Lab

    19 May 2006 | Tools | Contributor(s): Samik Mukherjee, Abhijeet Paul, Neophytos Neophytou, Raseong Kim, Junzhe Geng, Michael Povolotskyi, Tillmann Christoph Kubis, Arvind Ajoy, Bozidar Novakovic, James Fonseca, Sebastian Steiger, Michael McLennan, Mark Lundstrom, Gerhard Klimeck

    Computes the electronic and phonon structure of various materials in the spatial configuration of bulk , quantum wells, and wires

    http://nanohub.org/resources/bandstrlab

  4. MOSCap

    06 Apr 2006 | Tools | Contributor(s): Akira Matsudaira, Saumitra Raj Mehrotra, Shaikh S. Ahmed, Gerhard Klimeck, Dragica Vasileska

    Capacitance of a MOS device

    http://nanohub.org/resources/moscap

  5. MOSFet

    30 Mar 2006 | Tools | Contributor(s): Shaikh S. Ahmed, Saumitra Raj Mehrotra, SungGeun Kim, Matteo Mannino, Gerhard Klimeck, Dragica Vasileska, Xufeng Wang, Himadri Pal, Gloria Wahyu Budiman

    Simulates the current-voltage characteristics for bulk, SOI, and double-gate Field Effect Transistors (FETs)

    http://nanohub.org/resources/mosfet

  6. QC-Lab

    14 Feb 2006 | Tools | Contributor(s): Baudilio Tejerina

    Quantum Chemsitry Lab: Ab Initio and DFT molecular and electronic structure calculations of small molecules

    http://nanohub.org/resources/qclab

  7. Schred

    30 Mar 2006 | Tools | Contributor(s): Dragica Vasileska, Shaikh S. Ahmed, Gokula Kannan, Matteo Mannino, Gerhard Klimeck, Mark Lundstrom, Akira Matsudaira, Junzhe Geng

    SCHRED simulation software calculates the envelope wavefunctions and the corresponding bound-state energies in a typical MOS, SOS and a typical SOI structure.

    http://nanohub.org/resources/schred

  8. Padre

    12 Jan 2006 | Tools | Contributor(s): Mark R. Pinto, kent smith, Muhammad A. Alam, Steven Clark, Xufeng Wang, Gerhard Klimeck, Dragica Vasileska

    2D/3D devices under steady state, transient conditions or AC small-signal analysis

    http://nanohub.org/resources/padre

  9. Quantum Dot Lab

    12 Nov 2005 | Tools | Contributor(s): Prasad Sarangapani, Daniel F Mejia, Andrew Roché, Lars Bjaalie, Sebastian Steiger, David Ebert, Matteo Mannino, Hong-Hyun Park, Tillmann Christoph Kubis, James Fonseca, Michael Povolotskyi, Michael McLennan, Gerhard Klimeck

    Compute the eigenstates of a particle in a box of various shapes including domes, pyramids and multilayer structures.

    http://nanohub.org/resources/qdot

  10. Resonant Tunneling Diode Simulator

    10 Oct 2005 | Tools | Contributor(s): Michael McLennan

    Simulate 1D resonant tunneling devices and other heterostructures via ballistic quantum transport

    http://nanohub.org/resources/rtd

  11. PN Junction Lab

    12 Sep 2005 | Tools | Contributor(s): Dragica Vasileska, Matteo Mannino, Michael McLennan, Xufeng Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Benjamin P Haley

    This tool enables users to explore and teach the basic concepts of P-N junction devices.

    http://nanohub.org/resources/pntoy

  12. CNT_bands

    09 Sep 2005 | Tools | Contributor(s): Jing Guo, Akira Matsudaira

    Computes E(k) and the density-of-states (DOS) vs. energy for a carbon nanotube

    http://nanohub.org/resources/cntbands

  13. Spice3f4

    14 Aug 2005 | Tools | Contributor(s): Michael McLennan

    General-purpose circuit simulation program for nonlinear dc, nonlinear transient, and linear ac analysis

    http://nanohub.org/resources/spice3f4

  14. MSL Simulator

    17 Jun 2005 | Tools | Contributor(s): K. J. Cho

    Easy-to-use interface for designing and analyzing electronic properties of different nano materials

    http://nanohub.org/resources/msl

  15. MolCToy

    08 Jun 2005 | Tools | Contributor(s): Magnus Paulsson, Ferdows Zahid, Supriyo Datta, Michael McLennan

    Computes current-voltage (I-V) characteristics and conductance spectrum (G-V) of a molecule sandwiched between two metallic contacts

    http://nanohub.org/resources/molctoy

  16. Prophet

    15 May 2005 | Tools | Contributor(s): Connor S. Rafferty, kent smith, Yang Liu, Derrick Kearney, Steven Clark

    Framework for solving systems of partial differential equations (PDEs) in time and 1, 2, or 3 space dimensions

    http://nanohub.org/resources/prophet

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.