Tags: nanoelectronics


Progress in technology has brought microelectronics to the nanoscale, but nanoelectronics is not yet a well-defined engineering discipline with a coherent, experimentally verified, theoretical framework. The NCN has a vision for a new, 'bottom-up' approach to electronics, which involves: understanding electronic conduction at the atomistic level; formulating new simulation techniques; developing a new generation of software tools; and bringing this new understanding and perspective into the classroom. We address problems in atomistic phenomena, quantum transport, percolative transport in inhomogeneous media, reliability, and the connection of nanoelectronics to new problems such as biology, medicine, and energy. We work closely with experimentalists to understand nanoscale phenomena and to explore new device concepts. In the course of this work, we produce open source software tools and educational resources that we share with the community through the nanoHUB.

This page is a starting point for nanoHUB users interested in nanoelectronics. It lists key resources developed by the NCN Nanoelectronics team. The nanoHUB contains many more resources for nanoelectronics, and they can be located with the nanoHUB search function. To find all nanoelectronics resources, search for 'nanoelectronics.' To find those contributed by the NCN nanoelectronics team, search for 'NCNnanoelectronics.' More information on Nanoelectronics can be found here.

All Categories (21-40 of 2031)

  1. Deepanshu Baisoya

    currently a student interested in science and technology and weirdness of quantum scale laws and wants to explore this universe through science and technology


  2. TrapSimulator

    28 Sep 2016 | | Contributor(s):: Ricardo Carvalho de Melos

    A RTN behavior Simulation Tool

  3. Quantum Spins in the Solid-State: An Atomistic Material-to-Device Modeling Approach

    28 Aug 2017 | | Contributor(s):: Rajib Rahman

    In this talk, I will present an atomistic modeling approach that combines intrinsic material and extrinsic device properties under a unified framework to describe spins and their interactions with theenvironment. This approach captures important spin properties such as exchange, spin-orbit,...

  4. Spin Transport Modeling Tool

    21 Aug 2017 | | Contributor(s):: Onur Dincer, Azad Naeemi

    Calculates spin transport parameters in nanoscale metallic interconnects.

  5. MEM oscillator network application simulation

    30 Jul 2017 | | Contributor(s):: Xinrui Wang

    Simulate pattern recognition and convolution using a MEMS oscillator network solver. (To get started, click dashboard preview and go to "run all" under menu "cell".)

  6. Ben Suwarato


  7. Spin-Orbitronics: A Route to Control Magnets via Spin-Orbit Interaction

    20 Jul 2017 | | Contributor(s):: Upadhyaya, Pramey

    In this talk, I will present this “spin-orbitronic” control for various magnetic systems. In particular, we will focus on the example of spin-orbit-induced manipulation of magnetic domain walls and skyrmions, i.e. particle-like magnetic configurations capable of storing and...

  8. S4 Editor

    19 Jul 2017 | | Contributor(s):: Martin Hunt

    Edit a Lua script for the Stanford Stratified Structure Solver and visualize the output

  9. Zakir ZH Hossain


  10. Simón Montoya Bedoya


  11. Building a Topological Quantum Computer 101

    19 Jun 2017 | | Contributor(s):: Michael Freedman

    Michael Freeman shares his perspective on how we should approach building a quantum computer, starting with the mathematical roots and moving through the physics to concrete engineering and materials growth challenges on which success will hinge. He will then discuss a new, enhanced,...

  12. Soft, Biocompatible Optoelectronic Interfaces to the Brain

    07 Jun 2017 | | Contributor(s):: John A. Rogers

    In this talk, we will describe foundational concepts in physics and materials science for these types of technologies, in 1D, 2D and 3D architectures. Examples in system level demonstrations include experiments on freely moving animals with ‘cellular-scale’, injectable optofluidic...

  13. S Kiran Kadam




  15. Breakdown Voltage & Current Density Calculator for meso scale gaps

    14 Jul 2016 | | Contributor(s):: Sebastian Camilo Mendoza Rincon, Siva Sashank Tholeti, Alina Alexeenko

    Calculates breakdown voltage and Fowler-Nordheim current density for meso scale gaps

  16. Vacancy Formation Energy with MD

    03 May 2017 | | Contributor(s):: Sam Reeve, Alejandro Strachan

    Calculate vacancy formation energy with molecular dynamics and various atomic interaction models

  17. Probabilistic Spin Logic Simulator

    11 Mar 2017 | | Contributor(s):: Brian Sutton, Kerem Yunus Camsari, Rafatul Faria, Supriyo Datta

    Simulation environment and tutorial for Probabilistic Spin Logic (PSL)

  18. Rowtu Srinivas


  19. Claire Battye

    "Research is creating new knowledge."Neil Armstrong


  20. Amogh Vithalkar