Tags: nanotransistors

Description

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

Online Presentations (81-100 of 312)

  1. ECE 656 Lecture 13: Phonon Transport

    05 Oct 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Electrons and Phonons General model for heat conduction Thermal conductivity Debye model Scattering Discussion Summary

    http://nanohub.org/resources/12174

  2. ECE 656 Lecture 8: More about Resistance

    03 Oct 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review Discussion power dissipation voltage drop n-type vs. p-type “apparent” mobility 1D and 3D resistors Graphene: A case study Summary

    http://nanohub.org/resources/12125

  3. ECE 656 Lecture 12: Scattering and Transmission

    30 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Physics of carrier scattering Transmission and mfp MFP and scattering Discussion Summary

    http://nanohub.org/resources/12136

  4. ECE 656 Lecture 10: Thermoelectric Effects - (Electronic) Heat Flow

    26 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Heat transport by current flow Mathematical formulation Discussion Summary

    http://nanohub.org/resources/12127

  5. ECE 656 Lecture 11: Coupled Current Equations and Thermoelectric Devices

    23 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Coupled flow equations Thermoelectric devices Discussion Summary

    http://nanohub.org/resources/12128

  6. ECE 656 Lecture 9: Thermoelectric Effects - Charge Flow

    23 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Charge transport in a temperature gradient Mathematical formulation Discussion Summary

    http://nanohub.org/resources/12126

  7. ECE 656 Lecture 6: Near-Equilibrium Transport in the Bulk

    20 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    http://nanohub.org/resources/12083

  8. ECE 656 Lecture 5: Modes and Transmission

    16 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Modes Transmission Discussion Summary

    http://nanohub.org/resources/12082

  9. ECE 656 Lecture 7: Resistance - Ballistic to Diffusive

    16 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review 2D ballistic resistors 2D diffusive resistors Discussion Summary

    http://nanohub.org/resources/12084

  10. ECE 656 Lecture 4: General Model for Transport

    07 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: The model Near-equilibrium transport Discussion Summary

    http://nanohub.org/resources/11933

  11. ECE 656 Lecture 3: Density of States

    07 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states Example: graphene Discussion Summary

    http://nanohub.org/resources/11932

  12. ECE 656 Lecture 2: Sums in k-Space/Integrals in Energy Space

    07 Sep 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Density of states in k-space Example Working in energy space Discussion Summary

    http://nanohub.org/resources/11931

  13. ECE 656 Lecture 1: Introduction to Carrier Transport

    26 Aug 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    http://nanohub.org/resources/11928

  14. Lecture 1: Introduction to Near-equilibrium Transport

    20 Jul 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    A short overview of the topics to be discussed in the following nine lectures in this short course on near-equilibrium transport.

    http://nanohub.org/resources/11708

  15. The Elusive Spin Transistor

    11 Apr 2011 | Online Presentations | Contributor(s): Supriyo Datta

    This presentation is a short introductory tutorial on spin-transistors.

    http://nanohub.org/resources/11128

  16. Control of Spin Precession in a Datta-Das Transistor Structure

    11 Apr 2011 | Online Presentations | Contributor(s): Hyun Cheol Koo

    Transistors Switch onto Spin Using the spin of an electron in addition to, or instead of, the charge properties is believed to have many benefits in terms of speed, power-cost, and integration...

    http://nanohub.org/resources/8057

  17. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...

    http://nanohub.org/resources/10199

  18. Chemically Enhanced Carbon-Based Nanomaterials and Devices

    09 Nov 2010 | Online Presentations | Contributor(s): Mark Hersam

    Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries,...

    http://nanohub.org/resources/9929

  19. Discussion Session 3 (Lectures 5 and 6)

    09 Sep 2010 | Online Presentations | Contributor(s): Supriyo Datta

    “Electronics from the Bottom Up” is an educational initiative designed to bring a new perspective to the field of nano device engineering. It is co-sponsored by the Intel Foundation and the...

    http://nanohub.org/resources/9679

  20. Lecture 6: From Spins to Magnets: How quantum objects turn classical

    09 Sep 2010 | Online Presentations | Contributor(s): Supriyo Datta

    “Electronics from the Bottom Up” is an educational initiative designed to bring a new perspective to the field of nano device engineering. It is co-sponsored by the Intel Foundation and the...

    http://nanohub.org/resources/9675