Tags: nanotransistors

Description

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

Resources (261-280 of 417)

  1. ECE 612 Lecture 6: MOSFET IV: Velocity saturation

    07 Oct 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review,2) Bulk charge theory (approximate),3) Velocity saturation theory,4) Summary.

  2. ECE 612 Lecture 5: MOSFET IV: Square law and bulk charge

    07 Oct 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Introduction,2) Square law theory,3) PN junction effects on MOSFETs,4) Bulk charge theory (exact),5) Summary.

  3. Introductory Comments

    29 Sep 2008 | | Contributor(s):: Muhammad A. Alam

  4. Lecture 7: Connection to the Bottom Up Approach

    23 Sep 2008 | | Contributor(s):: Mark Lundstrom

    While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally derived from the generic model for a nano-device to show the connection explicitly.

  5. Lecture 6: Quantum Transport in Nanoscale FETs

    12 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The previous lessons developed an analytical (or almost analytical) theory of the nanoscale FET, but to properly treat all the details, rigorous computer simulations are necessary. This lecture presents quantum transport simulations that display the internal physics of nanoscale MOSFETs. We use...

  6. ECE 612 Lecture 4: Polysilicon Gates/QM Effects

    12 Sep 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review, 2) Workfunctionof poly gates,3) CV with poly depletion,4) Quantum mechanics and VT,5) Quantum mechanics and C,6) Summary.

  7. ECE 612 Introductory Lecture

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

  8. Lecture 3A: The Ballistic MOSFET

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The IV characteristic of the ballistic MOSFET is formally derived. When Boltzmann statistics are assumed, the model developed here reduces to the one presented in Lecture 2. There is no new physics in this lecture - just a proper mathematical derivation of the approach that was developed...

  9. Lecture 3B: The Ballistic MOSFET

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    This lecture is a continuation of part 3A. After discussion some bandstructure considerations, it describes how 2D and subthreshold electrostatics are included in the ballistic model.

  10. Physics of Nanoscale Transistors: An Introduction to Electronics from the Bottom Up

    10 Sep 2008 | | Contributor(s):: Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime, and advances in nanoscience have opened up many new possibilities for devices. To realize these opportunities, our traditional understanding of electronic devices needs to be complemented with a new perspective that begins...

  11. ECE 612 Lecture 3: MOS Capacitors

    09 Sep 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Short review,2) Gate voltage / surface potential relation,3) The flatbandvoltage,4) MOS capacitance vs. voltage, 5) Gate voltage and inversion layer charge.

  12. ECE 612 Lecture 2: 1D MOS Electrostatics II

    09 Sep 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review,2) ‘Exact’ solution (bulk), 3) Approximate solution (bulk), 4) Approximate solution (ultra-thin body), 5) Summary.

  13. ECE 612 Lecture 1: 1D MOS Electrostatics I

    09 Sep 2008 | | Contributor(s):: Mark Lundstrom

    Outline: 1) Review of some fundamentals,2) Identify next steps.

  14. Lecture 2: Elementary Theory of the Nanoscale MOSFET

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent lectures.

  15. Lecture 4: Scattering in Nanoscale MOSFETs

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    No MOSFET is ever fully ballistic - there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective in this lecture is to present a simple, physical picture that describes the essence of the problem and...

  16. Lecture 5: Application to State-of-the-Art FETs

    08 Sep 2008 | | Contributor(s):: Mark Lundstrom

    The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the operation of modern FETs.

  17. ECE 612: Nanoscale Transistors (Fall 2008)

    27 Aug 2008 | | Contributor(s):: Mark Lundstrom

    Additional material related to the topics discussed in this course course is available at https://nanohub.org/courses/NT Fall 2008This course examines the device physics of advanced transistors and the process, device, circuit, and systems considerations that enter into the development...

  18. Introduction: Physics of Nanoscale MOSFETs

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

  19. 2008 NCN@Purdue Summer School: Electronics from the Bottom Up

    26 Aug 2008 | | Contributor(s):: Muhammad A. Alam, Supriyo Datta, Mark Lundstrom

    Electronics from the Bottom Up is designed to promote the bottom-up perspective by beginning at the nanoscale, and working up to the micro and macroscale of devices and systems. For electronic devices, this means first understanding the smallest electronic device – a single molecule with two...

  20. Physics of Nanoscale MOSFETs

    26 Aug 2008 | | Contributor(s):: Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of understanding MOSFETs that is much more suitable than traditional approaches when the channel lengths are of...