Tags: nanotransistors

Description

 

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

 

Resources (401-420 of 449)

  1. Thermal Microsystems for On-Chip Thermal Engineering

    04 Apr 2006 | | Contributor(s):: Suresh V. Garimella

    Electro-thermal co-design at the micro- and nano-scales is critical for achieving desired performance and reliability in microelectronic circuits. Emerging thermal microsystems technologies for this application area are discussed, with specific examples including a novel micromechanical...

  2. Modeling Single and Dual-Gate Capacitors using SCHRED

    31 Mar 2006 | | Contributor(s):: Dragica Vasileska

    SCHRED stands for self-consistent solver of the 1D Poisson and 1D effective mass Schrodinger equation as applied to modeling single gate or dual-gate capacitors. The program incorporates many features such as choice of degenerate and non-degenerate statistics for semiclassical charge description,...

  3. Mark Ratner Interview on Nanotechnology

    23 Mar 2006 | | Contributor(s):: Mark Ratner, Krishna Madhavan

    Nanotechnology interview with Krishna Madhavan.

  4. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | | Contributor(s):: Mark Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...

  5. Making the Tiniest and Fastest Transistor using Atomic Layer Deposition (ALD)

    13 Feb 2006 | | Contributor(s):: peide ye

    Atomic layer deposition (ALD) is an emerging nanotechnology enables the deposit of ultrathin films, one atomic layer by one atomic layer. ALD provides a powerful, new capability to grow or regrow nanoscale ultrathin films of metals, semiconductors and insulators. This presentation introduces ALD...

  6. A Gentle Introduction to Nanotechnology and Nanoscience

    13 Feb 2006 | | Contributor(s):: Mark Ratner

    While the Greek root nano just means dwarf, the nanoscale has become a giant focus of contemporary science and technology. We will examine the fundamental issues underlying the excitement involved in nanoscale research - what, why and how. Specific topics include assembly, properties,...

  7. Schred

    30 Mar 2006 | | Contributor(s):: Dragica Vasileska, Shaikh S. Ahmed, Gokula Kannan, Matteo Mannino, Gerhard Klimeck, Mark Lundstrom, Akira Matsudaira, Junzhe Geng

    SCHRED simulation software calculates the envelope wavefunctions and the corresponding bound-state energies in a typical MOS, SOS and a typical SOI structure.

  8. Nano-Scale Device Simulations Using PROPHET-Lab Exercise 2

    08 Feb 2006 | | Contributor(s):: Yang Liu

    Companion exercises for "Nano-Scale Device Simulations Using PROPHET".

  9. Nano-Scale Device Simulations Using PROPHET-Lab Exercise 1

    08 Feb 2006 | | Contributor(s):: Yang Liu

    Companion exercises for "Nano-Scale Device Simulations Using PROPHET".

  10. A Primer on Semiconductor Device Simulation

    23 Jan 2006 | | Contributor(s):: Mark Lundstrom

    Computer simulation is now an essential tool for the research and development of semiconductor processes and devices, but to use a simulation tool intelligently, one must know what's "under the hood." This talk is a tutorial introduction designed for someone using semiconductor...

  11. Nano-Scale Device Simulations Using PROPHET-Part II: PDE Systems

    20 Jan 2006 | | Contributor(s):: Yang Liu, Robert Dutton

    Part II uses examples toillustrate how to build user-defined PDE systems in PROPHET.

  12. Nano-Scale Device Simulations Using PROPHET-Part I: Basics

    20 Jan 2006 | | Contributor(s):: Yang Liu, Robert Dutton

    Part I covers the basics of PROPHET,including the set-up of simulation structures and parameters based onpre-defined PDE systems.

  13. Nano-Scale Device Simulations Using PROPHET

    20 Jan 2006 | | Contributor(s):: Yang Liu, Robert Dutton

    These two lectures are aimed to give a practical guide to the use of a general device simulator (PROPHET) available on nanoHUB. PROPHET is a partial differential equation (PDE) solver that offers users the flexibility of integrating new models and equations for their nano-device simulations. The...

  14. Optimization of Transistor Design for Carbon Nanotubes

    20 Jan 2006 | | Contributor(s):: Jing Guo

    We have developed a self-consistent atomistic simulator for CNTFETs.Using the simulator, we show that a recently reported high-performanceCNTFET delivers a near ballistic on-current. The off-state, however, issignificantly degraded because the CNTFET operates like anon-conventional Schottky...

  15. Padre

    12 Jan 2006 | | Contributor(s):: Mark R. Pinto, kent smith, Muhammad A. Alam, Steven Clark, Xufeng Wang, Gerhard Klimeck, Dragica Vasileska

    2D/3D devices under steady state, transient conditions or AC small-signal analysis

  16. Quantum Corrections for Monte Carlo Simulation

    05 Jan 2006 | | Contributor(s):: Umberto Ravaioli

    Size quantization is an important effect in modern scaled devices. Due to the cost and limitations of available full quantum approaches, it is appealing to extend semi-classical simulators by adding corrections for size quantization. Monte Carlo particle simulators are good candidates, because a...

  17. Exercises for FETToy

    11 Oct 2005 | | Contributor(s):: Mark Lundstrom

    This series of exercises uses the FETToy program to illustrate some of the key physical concepts for nanotransistors.

  18. Ballistic Nanotransistors - Learning Module

    07 Dec 2005 | | Contributor(s):: Mark Lundstrom

    This resource is an introduction to the theory ballistic nanotransistors. No transistor is fully ballistic, but analyzing nanotransistors by neglecting scattering processes provides new insights into the performance and limits of nanoscale MOSFETs. The materials presented below introduces the...

  19. Notes on the Ballistic MOSFET

    08 Oct 2005 | | Contributor(s):: Mark Lundstrom

    When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average distance between scattering events (the so-called mean-free-path, λ) is much shorter than the device. When...

  20. How Semiconductors and Transistors Work

    20 Nov 2005 | | Contributor(s):: John C. Bean

    This animation shows how semiconductor crystals work and how they are used to make transistor switches.