
ECE 612 Lecture 6: MOSFET IV: Velocity saturation
07 Oct 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Review,2) Bulk charge theory (approximate),3) Velocity saturation theory,4) Summary.

ECE 612 Lecture 5: MOSFET IV: Square law and bulk charge
07 Oct 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Introduction,2) Square law theory,3) PN junction effects on MOSFETs,4) Bulk charge theory (exact),5) Summary.

Introductory Comments
29 Sep 2008   Contributor(s):: Muhammad A. Alam

Lecture 7: Connection to the Bottom Up Approach
23 Sep 2008   Contributor(s):: Mark Lundstrom
While the previous lectures have been in the spirit of the bottom up approach, they did not follow the generic device model of Datta. In this lecture, the ballistic MOSFET theory will be formally derived from the generic model for a nanodevice to show the connection explicitly.

Lecture 6: Quantum Transport in Nanoscale FETs
12 Sep 2008   Contributor(s):: Mark Lundstrom
The previous lessons developed an analytical (or almost analytical) theory of the nanoscale FET, but to properly treat all the details, rigorous computer simulations are necessary. This lecture presents quantum transport simulations that display the internal physics of nanoscale MOSFETs. We use...

ECE 612 Lecture 4: Polysilicon Gates/QM Effects
12 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Review, 2) Workfunctionof poly gates,3) CV with poly depletion,4) Quantum mechanics and VT,5) Quantum mechanics and C,6) Summary.

ECE 612 Introductory Lecture
10 Sep 2008   Contributor(s):: Mark Lundstrom

Lecture 3A: The Ballistic MOSFET
10 Sep 2008   Contributor(s):: Mark Lundstrom
The IV characteristic of the ballistic MOSFET is formally derived. When Boltzmann statistics are assumed, the model developed here reduces to the one presented in Lecture 2. There is no new physics in this lecture  just a proper mathematical derivation of the approach that was developed...

Lecture 3B: The Ballistic MOSFET
10 Sep 2008   Contributor(s):: Mark Lundstrom
This lecture is a continuation of part 3A. After discussion some bandstructure considerations, it describes how 2D and subthreshold electrostatics are included in the ballistic model.

Physics of Nanoscale Transistors: An Introduction to Electronics from the Bottom Up
10 Sep 2008   Contributor(s):: Mark Lundstrom
Transistor scaling has pushed channel lengths to the nanometer regime, and advances in nanoscience have opened up many new possibilities for devices. To realize these opportunities, our traditional understanding of electronic devices needs to be complemented with a new perspective that begins...

ECE 612 Lecture 3: MOS Capacitors
09 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Short review,2) Gate voltage / surface potential relation,3) The flatbandvoltage,4) MOS capacitance vs. voltage, 5) Gate voltage and inversion layer charge.

ECE 612 Lecture 2: 1D MOS Electrostatics II
09 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Review,2) ‘Exact’ solution (bulk), 3) Approximate solution (bulk), 4) Approximate solution (ultrathin body), 5) Summary.

ECE 612 Lecture 1: 1D MOS Electrostatics I
09 Sep 2008   Contributor(s):: Mark Lundstrom
Outline: 1) Review of some fundamentals,2) Identify next steps.

Lecture 2: Elementary Theory of the Nanoscale MOSFET
08 Sep 2008   Contributor(s):: Mark Lundstrom
A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent lectures.

Lecture 4: Scattering in Nanoscale MOSFETs
08 Sep 2008   Contributor(s):: Mark Lundstrom
No MOSFET is ever fully ballistic  there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective in this lecture is to present a simple, physical picture that describes the essence of the problem and...

Lecture 5: Application to StateoftheArt FETs
08 Sep 2008   Contributor(s):: Mark Lundstrom
The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the operation of modern FETs.

ECE 612: Nanoscale Transistors (Fall 2008)
27 Aug 2008   Contributor(s):: Mark Lundstrom
Additional material related to the topics discussed in this course course is available at https://nanohub.org/courses/NT Fall 2008This course examines the device physics of advanced transistors and the process, device, circuit, and systems considerations that enter into the development...

Introduction: Physics of Nanoscale MOSFETs
26 Aug 2008   Contributor(s):: Mark Lundstrom

2008 NCN@Purdue Summer School: Electronics from the Bottom Up
26 Aug 2008   Contributor(s):: Muhammad A. Alam, Supriyo Datta, Mark Lundstrom
Electronics from the Bottom Up is designed to promote the bottomup perspective by beginning at the nanoscale, and working up to the micro and macroscale of devices and systems. For electronic devices, this means first understanding the smallest electronic device – a single molecule with two...

Physics of Nanoscale MOSFETs
26 Aug 2008   Contributor(s):: Mark Lundstrom
Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of understanding MOSFETs that is much more suitable than traditional approaches when the channel lengths are of...