Tags: nanotransistors

Description

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

All Categories (281-300 of 429)

  1. Physics of Nanoscale Transistors: An Introduction to Electronics from the Bottom Up

    10 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime, and advances in nanoscience have opened up many new possibilities for devices. To realize these opportunities, our...

    http://nanohub.org/resources/5207

  2. ECE 612 Lecture 3: MOS Capacitors

    09 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: 1) Short review, 2) Gate voltage / surface potential relation, 3) The flatbandvoltage, 4) MOS capacitance vs. voltage, 5) Gate voltage and inversion layer charge.

    http://nanohub.org/resources/5363

  3. ECE 612 Lecture 2: 1D MOS Electrostatics II

    09 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: 1) Review, 2) ‘Exact’ solution (bulk), 3) Approximate solution (bulk), 4) Approximate solution (ultra-thin body), 5) Summary.

    http://nanohub.org/resources/5362

  4. ECE 612 Lecture 1: 1D MOS Electrostatics I

    09 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: 1) Review of some fundamentals, 2) Identify next steps.

    http://nanohub.org/resources/5341

  5. Lecture 2: Elementary Theory of the Nanoscale MOSFET

    08 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    A very simple (actually overly simple) treatment of the nanoscale MOSFET. This lecture conveys the essence of the approach using only simple mathematics. It sets the stage for the subsequent...

    http://nanohub.org/resources/5308

  6. Lecture 4: Scattering in Nanoscale MOSFETs

    08 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    No MOSFET is ever fully ballistic - there is always some carrier scattering. Scattering makes the problem complicated and requires detailed numerical simulations to treat properly. My objective...

    http://nanohub.org/resources/5311

  7. Lecture 5: Application to State-of-the-Art FETs

    08 Sep 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    The previous lessons may seem a bit abstract and mathematical. To see how this all works, we examine measured data and show how the theory presented in the previous lessons help us understand the...

    http://nanohub.org/resources/5312

  8. ECE 612: Nanoscale Transistors (Fall 2008)

    27 Aug 2008 | Courses | Contributor(s): Mark Lundstrom

    Additional material related to the topics discussed in this course course is available at https://nanohub.org/courses/NT   Fall 2008 This course...

    http://nanohub.org/resources/5328

  9. Introduction: Physics of Nanoscale MOSFETs

    26 Aug 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    NCN@Purdue Summer School 2008 National Science Fondation Intel Corporation NCN@Purdue Summer School 2008 National Science Fondation Intel Corporation

    http://nanohub.org/resources/5317

  10. 2008 NCN@Purdue Summer School: Electronics from the Bottom Up

    26 Aug 2008 | Workshops | Contributor(s): Muhammad A. Alam, Supriyo Datta, Mark Lundstrom

    Electronics from the Bottom Up is designed to promote the bottom-up perspective by beginning at the nanoscale, and working up to the micro and macroscale of devices and systems. For electronic...

    http://nanohub.org/resources/5305

  11. Physics of Nanoscale MOSFETs

    26 Aug 2008 | Courses | Contributor(s): Mark Lundstrom

    Transistor scaling has pushed channel lengths to the nanometer regime where traditional approaches to MOSFET device physics are less and less suitable This short course describes a way of...

    http://nanohub.org/resources/5306

  12. Lecture 1: Review of MOSFET Fundamentals

    26 Aug 2008 | Online Presentations | Contributor(s): Mark Lundstrom

    A quick review of the traditional theory of the MOSFET along with a review of key device performance metrics. A short discussion of the limits of the traditional (drift-diffusion) approach and...

    http://nanohub.org/resources/5307

  13. Lecture 1A: What and where is the resistance?

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at...

    http://nanohub.org/resources/5211

  14. Lecture 1B: What and where is the resistance?

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To introduce a simple quantitative model that highlights the essential parameters that determine electrical conduction: the density of states in the channel, D and the rates at...

    http://nanohub.org/resources/5248

  15. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    08 Aug 2008 | Tools | Contributor(s): Xufeng Wang, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor device education

    http://nanohub.org/resources/abacus

  16. Nano Carbon: From ballistic transistors to atomic drumheads

    14 May 2008 | Online Presentations | Contributor(s): Paul L. McEuen

    Carbon takes many forms, from precious diamonds to lowly graphite. Surprisingly, it is the latter that is the most prized by nano physicists. Graphene, a single layer of graphite, can serve as an...

    http://nanohub.org/resources/4398

  17. Examples for QuaMC 2D particle-based device Simulator Tool

    12 May 2008 | Online Presentations | Contributor(s): Dragica Vasileska, Shaikh S. Ahmed, Gerhard Klimeck

    We provide three examples that demonstrate the full capabilities of QuaMC 2D for alternative device technologies.

    http://nanohub.org/resources/4543

  18. How do I derive the 2D electron density used in nano MOSFET calculations?

    Open | Responses: 1

    In nanomos-2.5, the density of charge is obtained by multiplying the square of the wavefunction by a prefactor: with semiclassical method, that prefactor is given by

    http://nanohub.org/answers/question/54

  19. What Promises do Nanotubes and Nanowires Hold for Future Nanoelectronics Applications?

    18 Feb 2008 | Online Presentations | Contributor(s): Joerg Appenzeller

    Various low-dimensional materials are currently explored for future electronics applications. The common ground for all these structures is that the surface related impact can no longer be...

    http://nanohub.org/resources/4059

  20. Semiconductor Device Education Material

    28 Jan 2008 | Teaching Materials | Contributor(s): Gerhard Klimeck

    This page has moved to "a Wiki page format" When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic...

    http://nanohub.org/resources/edu_semi