Today's maintenance is complete. close

Support

Support Options

Submit a Support Ticket

 

Tags: nanotransistors

Description

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

All Categories (61-80 of 830)

  1. ECE 656 Lecture 40: Ballistic Transport in Devices II

    21 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    This lecture should be viewed in the 2006 teaching ECE 612 Lecture 10: The Ballistic MOSFET

    http://nanohub.org/resources/12715

  2. ECE 656 Lecture 37: Non-Local Transport

    21 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    This lecture should be viewed in the 2009 teaching ECE 656 Lecture 33: Non-Local Transport

    http://nanohub.org/resources/12712

  3. ECE 656 Lecture 33: Heterostructures

    21 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review of L31 Carrier temperature and heat flux Heterostructures Summary

    http://nanohub.org/resources/12707

  4. ECE 656 Lecture 34a: Monte Carlo Simulation I

    21 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline Introduction Review of carrier scattering Simulating carrier trajectories Free flight Collision Update after collision Putting it all together Summary

    http://nanohub.org/resources/12708

  5. ECE 656 Lecture 34b: Monte Carlo Simulation II

    21 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline Introduction Review of carrier scattering Simulating carrier trajectories Free flight Collision Update after collision Putting it all together Summary

    http://nanohub.org/resources/12709

  6. ECE 656 Lecture 30: Balance Equation Approach I

    09 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    This lecture should be viewed in the 2009 teaching ECE 656 Lecture 28: Balance Equation Approach I

    http://nanohub.org/resources/12704

  7. ECE 656 Lecture 39: Ballistic Transport in Devices I

    09 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Transport across a barrier Transport across a thin base High-field collectors Questions?

    http://nanohub.org/resources/12714

  8. ECE 656 Lecture 36: High-field Transport

    09 Feb 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Brief Introduction Current Equation Qualitative features of high field transport Saturated velocity Electron temperature model Survey of results Quick Summary

    http://nanohub.org/resources/12711

  9. ECE 656 Lecture 31: Balance Equation Approach II

    25 Jan 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review of L30 Energy balance equation Energy flux balance equation Terminating the hierarchy Summary

    http://nanohub.org/resources/12705

  10. ECE 656 Lecture 35: Introduction to Quantum Transport in Devices

    25 Jan 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Semiclassical ballistic transport Quantum ballistic transport Carrier scattering in quantum transport Discussion Summary

    http://nanohub.org/resources/12710

  11. ECE 656 Lecture 32: Balance Equation Approach III

    19 Jan 2012 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review of L31 Carrier temperature and heat flux Heterostructures Summary

    http://nanohub.org/resources/12706

  12. ECE 656 Lecture 29: The BTE Revisited - Equilibrium and Ballistic

    05 Dec 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Quick review Equilibrium BTE Ballistic BTE Discussion Summary

    http://nanohub.org/resources/12500

  13. ECE 656 Lecture 23: Ionized Impurity Scattering II

    01 Dec 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review Conwell-Weisskopf approach II Mobility Discussion Summary / Questions

    http://nanohub.org/resources/12454

  14. ECE 656 Lecture 27: Scattering in 1D, 2D and 3D

    22 Nov 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review of ADP Scattering in 3D ADP Scattering in 2D: MCA ADP Scattering in 2D: FGR ADP Scattering in 1D: FGR Mobility in 1D, 2D, and 3D

    http://nanohub.org/resources/12458

  15. ECE 656 Lecture 26: Phonon Scattering III

    22 Nov 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review Example POP and IV scattering Scattering in common semiconductors Electron-electron scattering Summary

    http://nanohub.org/resources/12457

  16. ECE 656 Lecture 25: Phonon Scattering II

    22 Nov 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review phonons electron-phonon coupling Energy-momentum conservation Mathematical formulation Example Summary

    http://nanohub.org/resources/12456

  17. ECE 656 Lecture 21: Scattering and Fermi’s Golden Rule

    21 Nov 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Fermi’s Golden Rule Example: static potential Example: oscillating potential Discussion Summary

    http://nanohub.org/resources/12452

  18. ECE 656 Lecture 22: Ionized Impurity Scattering I

    10 Nov 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Review Screening Brooks-Herring approach Conwell-Weisskopf approach Discussion Summary/Questions

    http://nanohub.org/resources/12453

  19. ECE 656 Lecture 28: Scattering of Bloch Electrons

    09 Nov 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    This lecture should be viewed in the 2009 teaching ECE 656 Lecture 27: Scattering of Bloch Electrons

    http://nanohub.org/resources/12459

  20. ECE 656 Lecture 24: Phonon Scattering I

    09 Nov 2011 | Online Presentations | Contributor(s): Mark Lundstrom

    This lecture should be viewed in the 2009 teaching ECE 656 Lecture 23: Phonon Scattering I

    http://nanohub.org/resources/12455

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.