Tags: nanotransistors

Description

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

All Categories (401-420 of 429)

  1. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

    http://nanohub.org/resources/381

  2. FETToy 2.0 Source Code Download

    27 Oct 2005 | Downloads

    FETToy 2.0 is a set of Matlab scripts that calculate the ballistic I-V characteristics for a conventional MOSFETs, Nanowire MOSFETs and Carbon NanoTube MOSFETs. For conventional MOSFETs, FETToy...

    http://nanohub.org/resources/107

  3. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than...

    http://nanohub.org/resources/513

  4. Simple Theory of the Ballistic MOSFET

    19 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I...

    http://nanohub.org/resources/491

  5. Semiconductor Interfaces at the Nanoscale

    13 Oct 2005 | Online Presentations | Contributor(s): David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device...

    http://nanohub.org/resources/196

  6. Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons

    04 Oct 2005 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information...

    http://nanohub.org/resources/194

  7. On the Reliability of Micro-Electronic Devices: An Introductory Lecture on Negative Bias Temperature Instability

    03 Oct 2005 | Online Presentations | Contributor(s): Muhammad A. Alam

    In 1930s Bell Labs scientists chose to focus on Siand Ge, rather than better known semiconductors like Ag2S and Cu2S, mostly because of their reliable performance. Their choice was rewarded with...

    http://nanohub.org/resources/193

  8. Modeling and Simulation of Sub-Micron Thermal Transport

    27 Sep 2005 | Online Presentations | Contributor(s): Jayathi Murthy

    In recent years, there has been increasing interest in understanding thermal phenomena at the sub-micron scale. Applications include the thermal performance of microelectronic devices,...

    http://nanohub.org/resources/192

  9. Moore's Law Forever?

    10 Aug 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    This talk covers the big technological changes in the 20th and 21st century that were correctly predicted by Gordon Moore in 1965. Moore's Law states that the number of transistors on a silicon...

    http://nanohub.org/resources/188

  10. Nanoelectronics: The New Frontier?

    26 May 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths of only 50 nm, and...

    http://nanohub.org/resources/185

  11. 2005 Molecular Conduction and Sensors Workshop

    25 May 2005 | Workshops

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL...

    http://nanohub.org/resources/140

  12. CMOS Nanotechnology

    25 May 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    In non-specialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor...

    http://nanohub.org/resources/166

  13. Transistors

    25 May 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    The transistor is the basic element of electronic systems. The integrated circuits inside today's personal computers, cell phones, PDA's, etc., contain hundreds of millions of transistors on a...

    http://nanohub.org/resources/167

  14. Prophet

    15 May 2005 | Tools | Contributor(s): Connor S. Rafferty, kent smith, Yang Liu, Derrick Kearney, Steven Clark

    Framework for solving systems of partial differential equations (PDEs) in time and 1, 2, or 3 space dimensions

    http://nanohub.org/resources/prophet

  15. MATLAB Scripts for "Quantum Transport: Atom to Transistor"

    15 Mar 2005 | Downloads | Contributor(s): Supriyo Datta

    Tinker with quantum transport models! Download the MATLAB scripts used to demonstrate the physics described in Supriyo Datta's book Quantum Transport: Atom to Transistor. These simple models are...

    http://nanohub.org/resources/103

  16. Self-Heating and Scaling of Silicon Nano-Transistors

    07 Mar 2005 | Online Presentations | Contributor(s): Eric Pop

    The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable...

    http://nanohub.org/resources/168

  17. NanoMOS 2.5 Source Code Download

    22 Feb 2005 | Downloads | Contributor(s): Zhibin Ren, Sebastien Goasguen

    NanoMOS is a 2-D simulator for thin body (less than 5 nm), fully depleted, double-gated n-MOSFETs. A choice of five transport models is available (drift-diffusion, classical ballistic, energy...

    http://nanohub.org/resources/110

  18. Curriculum on Nanotechnology

    27 Jan 2005 | Courses

    To exploit the opportunities that nanoscience is giving us, engineers will need to learn how to think about materials, devices, circuits, and systems in new ways. The NCN seeks to bring the new...

    http://nanohub.org/resources/100

  19. Exponential Challenges, Exponential Rewards - The Future of Moore's Law

    14 Dec 2004 | Online Presentations | Contributor(s): Shekhar Borkar

    Three exponentials have been the foundation of today's electronics, which are often taken for granted—namely transistor density, performance, and energy. Moore's Law captures the impact of...

    http://nanohub.org/resources/177

  20. Electronic Transport in Semiconductors (Introductory Lecture)

    26 Aug 2004 | Online Presentations | Contributor(s): Mark Lundstrom

    Welcome to the ECE 656 Introductory lecture. The objective of the course is to develop a clear, physical understanding of charge carrier transport in bulk semiconductors and in small semiconductor...

    http://nanohub.org/resources/169