Tags: nanotransistors

Description

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

All Categories (21-40 of 437)

  1. An Electrical Engineering Perspective on Molecular Electronics

    26 Oct 2005 | | Contributor(s):: Mark Lundstrom

    After forty years of advances in integrated circuit technology, microelectronics is undergoing a transformation to nanoelectronics. Modern day MOSFETs now have channel lengths that are less than 50 nm long, and billion transistor logic chips have arrived. Moore's Law continues, but the end of...

  2. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | | Contributor(s):: Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the semiconductor materials modeling community usually treats infinitely periodic structures. Two electronic...

  3. Ballistic Nanotransistors - Learning Module

    07 Dec 2005 | | Contributor(s):: Mark Lundstrom

    This resource is an introduction to the theory ballistic nanotransistors. No transistor is fully ballistic, but analyzing nanotransistors by neglecting scattering processes provides new insights into the performance and limits of nanoscale MOSFETs. The materials presented below introduces the...

  4. Band Structure Lab Demonstration: Bulk Strain

    03 Jun 2009 | | Contributor(s):: Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

  5. Bandstructure in Nanoelectronics

    01 Nov 2005 | | Contributor(s):: Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material needs to be included in the device modeling. Atomistic bandstructure effects in resonant tunneling...

  6. BJT Lab: h-Parameters Calculation Exercise

    30 Jun 2009 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    In this exercise students are required to obtain the appropriate input and output parameters to extract the small signal h-parameters in common-base configuration. Afterwards they need to derive the h-parameters in common-emitter configuration in terms of the h-parameters in the common base...

  7. BNC Annual Research Symposium: Nanoelectronics and Semiconductor Devices

    23 Apr 2007 | | Contributor(s):: David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.

  8. Can numerical “experiments” INSPIRE physical experiments?

    20 Dec 2007 | | Contributor(s):: Supriyo Datta

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

  9. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    30 Oct 2006 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-κ gate...

  10. Carrier Transport at the Nanoscale

    27 Nov 2007 | | Contributor(s):: Mark Lundstrom

    Fall 2007Note: A more current teaching of this course with online lectures is available as ECE 656: Electronic Transport in Semiconductors (Fall 2011).This is a course about how charge flows in semiconductors with an emphasis on transport at the nanoscale. After a brief review basic concepts,...

  11. Chemically Enhanced Carbon-Based Nanomaterials and Devices

    09 Nov 2010 | | Contributor(s):: Mark Hersam

    Carbon-based nanomaterials have attracted significant attention due to their potential to enable and/or improve applications such as transistors, transparent conductors, solar cells, batteries, and biosensors. This talk will delineate chemical strategies for enhancing the electronic and optical...

  12. Chowdhury, Prodipto

    http://nanohub.org/members/152180

  13. CMOS Nanotechnology

    07 Jul 2004 | | Contributor(s):: Mark Lundstrom

    In non-specialist language, this talk introduces CMOS technology used for modern electronics. Beginning with an explanation of "CMOS," the speaker relates basic system considerations of transistor design and identifies future challenges for CMOS electronics. Anyone with an elementary...

  14. Computational and Experimental Study of Transport in Advanced Silicon Devices

    27 Jun 2013 | | Contributor(s):: Farzin Assad

    In this thesis, we study electron transport in advanced silicon devices by focusing on the two most important classes of devices: the bipolar junction transistor (BJT) and the MOSFET. In regards to the BJT, we will compare and assess the solutions of a physically detailed microscopic model to...

  15. Computational Modeling: Experience from my Bell Lab Days

    19 Dec 2007 | | Contributor(s):: Muhammad A. Alam

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.

  16. Control of Spin Precession in a Datta-Das Transistor Structure

    11 Apr 2011 | | Contributor(s):: Hyun Cheol Koo

    Transistors Switch onto Spin Using the spin of an electron in addition to, or instead of, the charge properties is believed to have many benefits in terms of speed, power-cost, and integration density over conventional electronic circuits. At the heart of the field of spintronics has been a...

  17. Curriculum on Nanotechnology

    27 Jan 2005 |

    To exploit the opportunities that nanoscience is giving us, engineers will need to learn how to think about materials, devices, circuits, and systems in new ways. The NCN seeks to bring the new understanding emerging from research in nanoscience into the graduate and undergraduate curriculum....

  18. Design in the Nanometer Regime: Process Variation

    28 Nov 2006 | | Contributor(s):: Kaushik Roy

    Scaling of technology over the last few decades has produced an exponential growth in computing power of integrated circuits and an unprecedented number of transistors integrated into a single. However, scaling is facing several problems — severe short channel effects, exponential increase in...

  19. Design of CMOS Circuits in the Nanometer Regime: Leakage Tolerance

    28 Nov 2006 | | Contributor(s):: Kaushik Roy

    The scaling of technology has produced exponential growth in transistor development and computing power in the last few decades, but scaling still presents several challenges. These two lectures will cover device aware CMOS design to address power, reliability, and process variations in scaled...

  20. Device Physics and Simulation of Silicon Nanowire Transistors

    20 May 2006 |

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...