Tags: nanotransistors

Description

A nanotransistor is a transistor whose dimensions are measured in nanometers. Transistors are used for switching and amplifying electronic signals. When combined in the millions and billions, they can be used to create sophisticated programmable information processors.

All Categories (401-420 of 438)

  1. Quantum Transport: Atom to Transistor (Spring 2004)

    23 May 2006 | | Contributor(s):: Supriyo Datta

    Spring 2004 Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Course Information Website The development of "nanotechnology" has made it possible to engineer materials and devices...

  2. Quantum-dot Cellular Automata

    24 Nov 2003 |

    The multiple challenges presented by the problem of scaling transistor sizes are all related to the fact that transistors encode binary information by the state of a current switch. What is required is a new paradigm, still capable of providing general purpose digital computation, but which can...

  3. recursive algorithm for NEGF in Matlab

    13 Nov 2006 | | Contributor(s):: Dmitri Nikonov, Siyu Koswatta

    This zip-archive contains two Matlab functions for the recursive solution of the partial matrix inversion and partial 3-matrix multiplication used in the non-equilibrium Green’s function (NEGF) method.recuresealg3d.m- works for 3-diagonal matricesrecuresealgblock3d.m- works for 3-block-diagonal...

  4. Reliability Physics of Nanoscale Transistors

    27 Nov 2007 | | Contributor(s):: Muhammad A. Alam

    This course is now offered on nanoHUB as ECE 695A Reliability Physics of Nanotransistors.

  5. RF Solid-State Vibrating Transistors

    15 Feb 2014 | | Contributor(s):: Dana Weinstein

    In this talk, I will discuss the Resonant Body Transistor (RBT), which can be integrated into a standard CMOS process. The first hybrid RF MEMS-CMOS resonators in Si at the transistor level of IBM’s SOI CMOS process, without any post-processing or packaging will be described. ...

  6. Rishabh Singhal

    http://nanohub.org/members/200649

  7. Schottky-Barrier CNFET

    16 Mar 2007 | | Contributor(s):: Arash Hazeghi, Tejas K, H.-S. Philip Wong

    Simulate Carbon Nanotube field Effect transistor with Schottky Barriers

  8. Schred

    30 Mar 2006 | | Contributor(s):: Dragica Vasileska, Shaikh S. Ahmed, Gokula Kannan, Matteo Mannino, Gerhard Klimeck, Mark Lundstrom, Akira Matsudaira, Junzhe Geng

    SCHRED simulation software calculates the envelope wavefunctions and the corresponding bound-state energies in a typical MOS, SOS and a typical SOI structure.

  9. Self-Heating and Scaling of Silicon Nano-Transistors

    05 Aug 2004 | | Contributor(s):: Eric Pop

    The most often cited technological roadblock of nanoscale electronics is the "power problem," i.e. power densities and device temperatures reaching levels that will prevent their reliable operation. Technology roadmap (ITRS) requirements are expected to lead to more heat dissipation problems,...

  10. Semiconductor Device Education Material

    28 Jan 2008 | | Contributor(s):: Gerhard Klimeck

    This page has moved to "a Wiki page format" When we hear the words, semiconductor device, we may think first of the transistors in PCs or video game consoles, but transistors are the basic component in all of the electronic devices we use in our daily lives. Electronic systems are...

  11. Semiconductor Interfaces at the Nanoscale

    17 Oct 2005 | | Contributor(s):: David Janes

    The trend in downscaling of electronic devices and the need to add functionalities such as sensing and nonvolatile memory to existing circuitry dictate that new approaches be developed for device structures and fabrication technologies. Various device technologies are being investigated,...

  12. Sheikh Aamir Ahsan

    http://nanohub.org/members/102143

  13. SIDDHARTH KRISHNAN

    http://nanohub.org/members/190793

  14. Simple Theory of the Ballistic MOSFET

    11 Oct 2005 | | Contributor(s):: Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I will describe a simple analysis of the ballistic MOSFET. No MOSFET is truly ballistic, but approaching this...

  15. Simulating Quantum Transport in Nanoscale Transistors: Real versus Mode-Space Approaches

    28 Sep 2006 | | Contributor(s):: Zhibin Ren, Supriyo Datta, Mark Lundstrom, Ramesh Venugopal, D. Jovanovic

    In this paper, we present a computationally efficient, two-dimensional quantum mechanical sim- ulation scheme for modeling electron transport in thin body, fully depleted, n-channel, silicon- on-insulator transistors in the ballistic limit. The proposed simulation scheme, which solves the...

  16. Simulator for a T-stub transistor in a magnetic field

    12 Mar 2010 | | Contributor(s):: Massimo Macucci

    Simulates transport and shot noise in a t-stub transistor in the presence of a magnetic field

  17. Smt. A. Naga Malli

    Assistant Professor, Dept of ECE, Gayatri Vidya Parishad college of Engineeering(A)

    http://nanohub.org/members/146115

  18. Sofia Cunha

    http://nanohub.org/members/195711

  19. Srinivas Varma Pericherla

    http://nanohub.org/members/186462

  20. Sunjeet Jena

    http://nanohub.org/members/130889