Tags: nanowires


A nanowire is a nanostructure, with the diameter of the order of a nanometer. Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important.

Learn more about quantum dots from the many resources on this site, listed below. More information on Nanowires can be found here.

Resources (21-40 of 98)

  1. Landauer Approach to Thermoelectrics

    23 Jun 2013 | | Contributor(s):: Changwook Jeong

    Many efforts have been made to search for materials that maximize the thermoelectric (TE) figure of merit, ZT, but for decades, the improvement has been limited because of the interdependent material parameters that determine ZT. Recently, several breakthroughs have been reported by applying...

  2. [Illinois] CNST 2012: III-V Semiconductor Nanowire Arraybased Transistors

    02 Jun 2013 | | Contributor(s):: Xiuling Li

  3. [Illinois] Bio-sensing Summer Series 2010: Biomimetic Cilia Sensor Arrays Using Electrochemically Synthesized Magnetic Nanowires

    07 Feb 2013 | | Contributor(s):: Beth Stadler


  4. [Illinois] BioNanotechnology Seminar Series Fall 2012: Label-Free Electronic Detection of Cancer Biomarkers Using Silicon Nanowire Arrays

    18 Dec 2012 | | Contributor(s):: Brian Dorvel

    Improving the performance and lowering the analyte detection limits of optical and electronic biosensors is essential for advancing wide ranging applications in diagnostics and drug discovery. One of these diagnostic platforms, based upon microfluidics coupled to ion-selective field effect...

  5. [Illinois] Nano EP Series: Thermoelectrics of Roughened Silicon Nanowire Arrays

    12 Dec 2012 | | Contributor(s):: Jyothi Sadhu

    "Thermoelectrics of Roughened Silicon Nanowire Arrays"The possibility of using silicon as a thermoelectric material for waste heat recovery is technologically significant due to silicon's economy of scale and vast processing knowhow. Patterning silicon as nanowires with roughened sidewalls is...

  6. [Illinois] Nano EP Seminar Series: Thin-Film Nanocalorimetry of Lamellar Silver Alkanethiolate Crystals

    26 Nov 2012 | | Contributor(s):: Lito de la Rama

    "Thin-Film Nanocalorimetry of Lamellar Silver Alkanethiolate Crystals"Materials exhibit unique thermodynamic properties at the nanoscale.The study of size-dependent phenomena is critical in our understanding of nanoscale systems.We have developed an ultra-sensitive, fast-scanning thin film...

  7. A CNTFET-Based Nanowired Induction Two-Way Transducers

    05 Sep 2012 | | Contributor(s):: Rostyslav Sklyar

    A complex of the induction magnetic field two-way nanotransducers of the different physical values for both the external and implantable interfaces in a wide range of arrays are summarized. Implementation of the nanowires allows reliable transducing of the biosignals' partials and bringing of...

  8. Illinois ECE598XL Semiconductor Nanotechnology

    27 Jun 2011 | | Contributor(s):: Xiuling Li

    Lectures and discussion on current topics of semiconductor nanotechnology building block formation, characterization and device applications. Group IV, III-V and II-VI semiconductor nanowires, nanotubes and related nanophotonic and nanoelectronic device science and technology will be examined,...

  9. CHM 696 Lecture 14: Semiconductor Nanoparticles, Nanorods, and Nanowires: Properties and Applications I

    02 Jun 2011 | | Contributor(s):: Alexander Wei

  10. CHM 696 Lecture 15: Semiconductor Nanoparticles, Nanorods, and Nanowires: Properties and Applications II

    02 Jun 2011 | | Contributor(s):: Alexander Wei

  11. Tutorial 4: Far-From-Equilibrium Quantum Transport

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    These lectures focus on the application of the theories using the nanoelectronic modeling tools NEMO 1- D, NEMO 3-D, and OMEN to realistically extended devices. Topics to be covered are realistic resonant tunneling diodes, quantum dots, nanowires, and Ultra-Thin-Body Transistors.

  12. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    29 Mar 2011 | | Contributor(s):: Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors

  13. Stick2D

    28 Feb 2011 | | Contributor(s):: Jiantong Li

    A Monte Carlo simulator to study percolation characteristics of two-dimensional stick systems

  14. OMEN Nanowire: solve the challenge

    05 Feb 2011 | | Contributor(s):: SungGeun Kim

    This document includes a challenging problems for OMEN Nanowire users. It challenges users to establish a nanowire transistor structure such that it satisfy the ITRS 2010 requirements.

  15. Electron Density in a Nanowire

    30 Jan 2011 | | Contributor(s):: Gerhard Klimeck, Saumitra Raj Mehrotra

    Electron Density in a circular Silicon nanowire transistor.

  16. OMEN Nanowire Homework Problems

    23 Jan 2011 | | Contributor(s):: SungGeun Kim

    OMEN Nanowire homework problems: anyone who has gone through the first-time user guide of OMEN Nanowire and done the examples in the guide should be able to run simulations in these homework problems and find the answers to them.

  17. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | | Contributor(s):: Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the semiconductor materials modeling community usually treats infinitely periodic structures. Two electronic...

  18. Limits of Thermal Processes and their Implications on Efficient Energy Utilization

    19 Oct 2010 | | Contributor(s):: Arunava Majumdar

    About 90 percent of the world’s energy use involves thermal processes – thermal engines to generate mechanical power; heating and cooling in buildings; heating involved in manufacturing of steel, cement, glass, petrochemicals etc. To identify opportunities for improving current technologies or...

  19. Thermoelectric effects in semiconductor nanostructures: Role of electron and lattice properties

    29 Sep 2010 | | Contributor(s):: Abhijeet Paul, Gerhard Klimeck

    This presentation covers some aspects of present development in the field of thermoelectricity and focuses particularly on the silicon nanowires as potential thermoelectric materials. The electronic and phonon dispersions are calculated and used for the calculation of thermoelectric properties...

  20. NanoV: Nanowire-based VLSI Design

    06 Sep 2010 | | Contributor(s):: muzaffer simsir

    In the coming decade, CMOS technology is expected to approach its scaling limitations. Among the proposed nanotechnologies, nanowires have the edge in the size of circuits and logic arrays that have already been fabricated and experimentally evaluated. For this technology, logic-level design...