Support

Support Options

Submit a Support Ticket

 

Tags: nanowires

Description

A nanowire is a nanostructure, with the diameter of the order of a nanometer. Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important.

Learn more about quantum dots from the many resources on this site, listed below. More information on Nanowires can be found here.

Resources (61-80 of 83)

  1. Multi-gate Nanowire FET

    18 May 2007 | Tools | Contributor(s): Mincheol Shin

    3D simulator for silicon nanowire field effect transistors with multiple gates

    http://nanohub.org/resources/mgnanowirefet

  2. Electron Emission from Nanoscale Carbon Materials

    15 May 2007 | Online Presentations | Contributor(s): Timothy S Fisher

    Prior studies on electron emission show possibly beneficial effects of nanoscale phenomena on energy-conversion characteristics. For example, recent work has shown that the electric field...

    http://nanohub.org/resources/2710

  3. BNC Annual Research Symposium: Nanoscale Energy Conversion

    23 Apr 2007 | Online Presentations | Contributor(s): Timothy S Fisher

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the...

    http://nanohub.org/resources/2636

  4. CMOS-Nano Hybrid Technology: a nanoFPGA-related study

    04 Apr 2007 | Online Presentations | Contributor(s): Wei Wang

    Dr. Wei Wang received his PhD degree in 2002 from Concordia University, Montreal, QC, Canada, in Electrical and Computer Engineering. From 2002 to 2004, he was an assistant professor in the...

    http://nanohub.org/resources/2567

  5. Is Seeing Believing? How to Think Visually and Analyze with Both Your Eyes and Brain

    26 Mar 2007 | Online Presentations | Contributor(s): David Ebert

    This presentation will cover the basic techniques, and some of the available tools, for visualization, and will explain how to avoid miscommunicating information from visualizations.

    http://nanohub.org/resources/2512

  6. What Can the TEM Tell You About Your Nanomaterial?

    26 Feb 2007 | Online Presentations | Contributor(s): Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does...

    http://nanohub.org/resources/2359

  7. Atomistic Alloy Disorder in Nanostructures

    26 Feb 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic structure and quantum transport simulations are typically performed in perfectly ordered semiconductor structures. Bands and modes are defined resulting in quantized conduction and...

    http://nanohub.org/resources/2350

  8. SPMW Nanomechanics: from nanotechnology to biology

    12 Dec 2006 | Online Presentations | Contributor(s): Elisa Riedo

    The development of new materials with size of few nanometers has opened a new field of scientific and technological research. The goal is to develop faster and better communication systems and...

    http://nanohub.org/resources/2101

  9. Materials strength: does size matter? nanoMATERIALS simulation toolkit tutorial

    01 Feb 2007 | Online Presentations | Contributor(s): Alejandro Strachan

    Molecular dynamics (MD) is a powerful technique to characterize the fundamental, atomic-level processes that govern materials behavior and is playing an important role in our understanding of the...

    http://nanohub.org/resources/2322

  10. Surprises on the nanoscale: Plasmonic waves that travel backward and spin birefringence without magnetic fields

    08 Jan 2007 | Online Presentations | Contributor(s): Daniel Neuhauser

    As nanonphotonics and nanoelectronics are pushed down towards the molecular scale, interesting effects emerge. We discuss how birefringence (different propagation of two polarizations) is...

    http://nanohub.org/resources/2256

  11. A Three-Dimensional Quantum Simulation of Silicon Nanowire Transistors with the Effective-Mass Approximation

    30 Oct 2006 | Publications | Contributor(s): Jing Wang, Eric Polizzi, Mark Lundstrom

    The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its...

    http://nanohub.org/resources/1926

  12. Device Physics and Simulation of Silicon Nanowire Transistors

    28 Sep 2006 | Publications | Contributor(s): Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them,...

    http://nanohub.org/resources/1833

  13. Investigation of the Electrical Characteristics of Triple-Gate FinFETs and Silicon-Nanowire FETs

    08 Aug 2006 | Online Presentations | Contributor(s): Monica Taba, Gerhard Klimeck

    Electrical characteristics of various Fin field-effect transistors (FinFETs) and silicon-nanowires were analyzed and compared using a modified three-dimensional self-consistent quantum-mechanical...

    http://nanohub.org/resources/1715

  14. DNA Nanowires

    06 Aug 2006 | Online Presentations | Contributor(s): Margarita Shalaev

    DNA is a relatively inexpensive and ubiquitous material that can be used as a scaffold for constructing nanowires. Our research focuses on the manufacturing of DNA-templated, magnetic nanowires....

    http://nanohub.org/resources/1679

  15. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 | Online Presentations | Contributor(s): Timothy D. Sands

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions...

    http://nanohub.org/resources/1639

  16. Device Physics and Simulation of Silicon Nanowire Transistors

    20 May 2006 | Publications | Contributor(s): Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the...

    http://nanohub.org/resources/1313

  17. Nanowire

    19 May 2006 | Tools | Contributor(s): Hong-Hyun Park, Lang Zeng, Matthew Buresh, Siqi Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Clemens Heitzinger, Benjamin P Haley

    Simulate 3D nanowire transport in the effective mass approximation with phonon scattering and 3D Poisson self-consistent solution

    http://nanohub.org/resources/nanowire

  18. The Long and Short of Pick-up Stick Transistors: A Promising Technology for Nano- and Macro-Electronics

    11 Apr 2006 | Online Presentations | Contributor(s): Muhammad A. Alam

    In recent years, there has been enormous interest in the emerging field of large-area macro-electronics, and fabricating thin-film transistors on flexible substrates. This talk will cover recent...

    http://nanohub.org/resources/1214

  19. Metal Oxide Nanowires: Synthesis, Characterization and Device Applications

    07 Mar 2006 | Online Presentations | Contributor(s): Jia Grace Lu

    Various metal oxide nanowires, such as ZnO, SnO2, Fe2O3, In2O3 and Ga2O3, have been synthesized by chemical vapor deposition method. Their structures and properties are characterized by TEM,...

    http://nanohub.org/resources/1096

  20. A 3D Quantum Simulation of Silicon Nanowire Field-Effect Transistors

    17 Jan 2006 | Online Presentations | Contributor(s): Mincheol Shin

    As the device size of the conventional planar metal oxide semiconductor field effect transistor (MOSFET) shrinks into the deep sub micron regime, the device performance significantly...

    http://nanohub.org/resources/983

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.