Tags: nanowires

Description

A nanowire is a nanostructure, with the diameter of the order of a nanometer. Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. At these scales, quantum mechanical effects are important.

Learn more about quantum dots from the many resources on this site, listed below. More information on Nanowires can be found here.

Resources (61-80 of 118)

  1. Threshold voltage in a nanowire MOSFET

    22 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, SungGeun Kim, Gerhard Klimeck

    Threshold voltage in a metal oxide semiconductor field-effect transistor (better known as a MOSFET) is usually defined as the gate voltage at which an inversion layer forms at the interface between the insulating layer (oxide) and the substrate (body) of the transistor. A MOSFET is said to be...

  2. Nanotechnology Animation Gallery

    22 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download. Additional animations are also...

  3. ECET 499N Lecture 10: Nanomaterials

    12 Apr 2010 | | Contributor(s):: Helen McNally

  4. Atomic Picture of Plastic Deformation in Metals: Lab Assignment Handout

    19 Jan 2010 | | Contributor(s):: Alejandro Strachan

    In this lab students will perform online molecular dynamics (MD) simulations of metallic nanowires deformed uniaxially and analyze the results...

  5. Notes on Scattering and Mobility in 1D, 2D, and 3D

    06 Nov 2009 | | Contributor(s):: Dmitri Nikonov, Md. Sayed Hasan, George Bourianoff

    Derivation of the phonon-limited mobility is reviewed for electrons in bulk (3D) orquantum confined (2D and 1D) semiconductor structures. Analytical estimates are madethat show the mobility in quantum confined structures is, in general, lower or no higherthan in non-confined ones.

  6. Metal Oxide Nanowires as Gas Sensing Elements: from Basic Research to Real World Applications

    21 Sep 2009 | | Contributor(s):: andrei kolmakov

    Quasi 1-D metal oxide single crystal chemiresistors are close to occupy their specific niche in the real world of solid state sensorics. Potentially, the major advantage of this kind of sensors with respect to available granular thin film sensors will be their size and stable, reproducible and...

  7. Illinois ECE 598EP Lecture 8 - Hot Chips: Thermal Conductivity of Solids

    24 Jun 2009 | | Contributor(s):: Eric Pop, Omar N Sobh

    Thermal Conductivity of SolidsTopics: Kinetic Theory of Energy Transport Simple Kinetic Theory Assumptions Phonon MFP and Scattering Time Silicon Film Thermal Conductivity Silicon Nanowire Thermal Conductivity Isotope Scattering Electron Thermal Conductivity Thermal Conductivity of Cu and Al

  8. Band Structure Lab: First-Time User Guide

    15 Jun 2009 | | Contributor(s):: Abhijeet Paul, Benjamin P Haley, Gerhard Klimeck

    This document provides useful information about Band Structure Lab. First-time users will find basic ideas about the physics behind the tool such as band formation, the Hamiltonian description, and other aspects. Additionally, we provide explanations of the input settings and the results of the...

  9. Band Structure Lab Demonstration: Bulk Strain

    12 Jun 2009 | | Contributor(s):: Gerhard Klimeck

    This video shows an electronic structure calculation of bulk Si using Band Structure Lab. Several powerful features of this tool are demonstrated.

  10. OMEN Nanowire Demonstration: Nanowire Simulation and Analysis

    11 Jun 2009 | | Contributor(s):: Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a nanowire using OMEN Nanowire. Several powerful analytic features of this tool are demonstrated.

  11. KP Nanowire/UTB FET

    22 Mar 2009 | | Contributor(s):: Mincheol Shin

    Simulate Nanowire/UTB FETs Using KP method

  12. OMEN Nanowire: First-Time User Guide

    21 Feb 2009 | | Contributor(s):: SungGeun Kim, Benjamin P Haley, Mathieu Luisier, Saumitra Raj Mehrotra, Gerhard Klimeck

    This is the first-time user guide for OMEN Nanowire. In addition to showing how the tool operates, it briefly explains what the OMEN Nanowire is, what it can do, and the input and output relationship.NCN@Purdue[1] Sung Dae Suk, et. al., IEDM, 2005, "High Performance 5nm radius Twin Silicon...

  13. OMEN Nanowire

    02 Sep 2008 | | Contributor(s):: SungGeun Kim, Mathieu Luisier, Benjamin P Haley, Abhijeet Paul, Saumitra Raj Mehrotra, Gerhard Klimeck, Hesameddin Ilatikhameneh

    Full-band 3D quantum transport simulation in nanowire structure

  14. Lecture 2: Thresholds, Islands, and Fractals

    04 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    Three basic concepts of the percolation theory – namely, percolation threshold, cluster size distribution, and fractal dimension – are defined and methods to calculate them are illustrated via elementary examples. These three concepts will form the theoretical foundation for discussion in Lecture...

  15. Lecture 1: Percolation in Electronic Devices

    04 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    Even a casual review of modern electronics quickly convinces everyone that randomness of geometrical parameters must play a key role in understanding the transport properties. Despite the diversity of these phenomena however, the concepts percolation theory provides a broad theoretical framework...

  16. Percolation Theory

    03 Nov 2008 | | Contributor(s):: Muhammad A. Alam

    The electronic devices these days have become so small that the number of dopant atoms in the channel of a MOFET transistor, the number of oxide atoms in its gate dielectric, the number silicon- or metal crystals in nanocrystal Flash memory, the number of Nanowires in a flexible nanoNET...

  17. ABACUS - Assembly of Basic Applications for Coordinated Understanding of Semiconductors

    16 Jul 2008 | | Contributor(s):: Xufeng Wang, Daniel Mejia, Dragica Vasileska, Gerhard Klimeck

    One-stop-shop for teaching semiconductor devices

  18. Can we define unique effective masses in Si nanowires?

    06 Jul 2008 | | Contributor(s):: Dragica Vasileska, Gerhard Klimeck

    This exercise teaches the users that for small nanostructures the concept of the effective mass becomes vague and in order to properly describe nanostructures one has to take into account the numerically calculated dispersion relation. This is clearly illustrated on the example of Si nanowires...

  19. Some Important Aspects of the Chemistry of Nanomaterials

    01 Jul 2008 | | Contributor(s):: C.N.R. Rao

    Keynote address for the launch of the Center for Analytical Instrumentation Development.

  20. BNC Annual Research Review: Thin-Film Electronics using Nanowire Transistors

    06 Jun 2008 | | Contributor(s):: David Janes

    This presentation is part of a collection of presentations describing the projects, people, and capabilities enhanced by research performed in the Birck Center, and a look at plans for the upcoming year.