Support

Support Options

Submit a Support Ticket

 

Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Resources (21-40 of 147)

  1. ECE 495N Lecture 35: NEGF Continued II

    10 Dec 2008 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/6022

  2. ECE 495N Lecture 33: Non-Equilibrium Green's Function (NEGF) Method

    04 Dec 2008 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/6008

  3. Quantum and Thermal Effects in Nanoscale Devices

    18 Sep 2008 | Online Presentations | Contributor(s): Dragica Vasileska

    To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the...

    http://nanohub.org/resources/5448

  4. Lecture 4A: Energy Exchange and Maxwell's Demon

    02 Sep 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a "Landauer-like picture" where the Joule heating associated...

    http://nanohub.org/resources/5271

  5. Introduction: Nanoelectronics and the meaning of resistance

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    This lecture provides a brief overview of the five-day short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all...

    http://nanohub.org/resources/5210

  6. Lecture 2A: Quantum Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers...

    http://nanohub.org/resources/5263

  7. Lecture 2B: Quantum Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the simple model from Lectures 1 into the full-fledged Non-equilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning numbers...

    http://nanohub.org/resources/5268

  8. Lecture 3A: Spin Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...

    http://nanohub.org/resources/5269

  9. Lecture 3B: Spin Transport

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...

    http://nanohub.org/resources/5270

  10. Lecture 4B: Energy Exchange and Maxwell’s Demon

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a “Landauer-like picture” where the Joule heating associated...

    http://nanohub.org/resources/5272

  11. Lecture 5A: Correlations and Entanglement

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using...

    http://nanohub.org/resources/5273

  12. Lecture 5B: Correlations and Entanglement

    20 Aug 2008 | Online Presentations | Contributor(s): Supriyo Datta

    Objective: To relate the one-electron picture used throughout these lectures to the more general but less tractable many-particle picture that underlies it. We introduce this new viewpoint using...

    http://nanohub.org/resources/5274

  13. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | Online Presentations | Contributor(s): Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those...

    http://nanohub.org/resources/3988

  14. MCW07 Physics of Contact Induced Current Asymmetry in Transport Through Molecules

    25 Feb 2008 | Online Presentations | Contributor(s): Bhaskaran Muralidharan, Owen D. Miller, Neeti Kapur, Avik Ghosh, Supriyo Datta

    We first outline the qualitatively different physics involved in the charging-induced current asymmetries in molecular conductors operating in the strongly coupled (weakly interacting)...

    http://nanohub.org/resources/3073

  15. Exploring Physical and Chemical control of molecular conductance: A computational study

    31 Jan 2008 | Online Presentations | Contributor(s): Barry D. Dunietz

    http://nanohub.org/resources/3945

  16. Can numerical “experiments” INSPIRE physical experiments?

    20 Dec 2007 | Online Presentations | Contributor(s): Supriyo Datta

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of...

    http://nanohub.org/resources/3716

  17. NanoElectronic MOdeling: NEMO

    20 Dec 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational...

    http://nanohub.org/resources/3707

  18. Engineering at the nanometer scale: Is it a new material or a new device?

    06 Nov 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This seminar will overview NEMO 3D simulation capabilities and its deployment on the nanoHUB as well as an overview of the nanoHUB impact on the community.

    http://nanohub.org/resources/3504

  19. MCW07 Modeling Molecule-Assisted Transport in Nanotransistors

    06 Nov 2007 | Online Presentations | Contributor(s): Kamil Walczak

    Molecular electronics faces many problems in practical device implementation, due to difficulties with fabrication and gate-ability. In these devices, molecules act as the main conducting channel....

    http://nanohub.org/resources/3074

  20. MCW07 Simple Models for Molecular Transport Junctions

    13 Sep 2007 | Online Presentations | Contributor(s): Misha Galperin, Abraham Nitzan, Mark A. Ratner

    We review our recent research on role of interactions in molecular transport junctions. We consider simple models within nonequilibrium Green function approach (NEGF) in steady-state regime.

    http://nanohub.org/resources/3072

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.