
Lecture 2: Graphene Fundamentals
22 Sep 2009  Online Presentations  Contributor(s): Supriyo Datta
Network for Computational Nanotechnology,
Intel Foundation
http://nanohub.org/resources/7384

Lecture 6: Graphene PN Junctions
22 Sep 2009  Online Presentations  Contributor(s): Mark Lundstrom
Outline:
Introduction
Electron optics in graphene
Transmission across NP junctions
Conductance of PN and NN junctions
Discussion
Summary
Network for Computational Nanotechnology,
Intel...
http://nanohub.org/resources/7423

Lecture 3: Low Bias Transport in Graphene: An Introduction
18 Sep 2009  Online Presentations  Contributor(s): Mark Lundstrom
Outline:
Introduction and Objectives
Theory
Experimental approach
Results
Discussion
Summary
Lecture notes are available for this lecture.
http://nanohub.org/resources/7401

ECE 659 Lecture 42: Summing Up
04 May 2009  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6734

ECE 659 Lecture 38.0: Correlations and Entanglement
04 May 2009  Online Presentations  Contributor(s): Supriyo Datta
This lecture is from the series of lectures
Nanoelectronics and the Meaning of Resistance.
http://nanohub.org/resources/6731

ECE 659 Lecture 36: Law of Equilibrium
01 May 2009  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6724

ECE 659 Lecture 18: NEGF Equations
03 Mar 2009  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6427

ECE 495N Lecture 34: NEGF Continued I
10 Dec 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6019

ECE 495N Lecture 35: NEGF Continued II
10 Dec 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6022

ECE 495N Lecture 33: NonEquilibrium Green's Function (NEGF) Method
04 Dec 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6008

Quantum and Thermal Effects in Nanoscale Devices
18 Sep 2008  Online Presentations  Contributor(s): Dragica Vasileska
To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the...
http://nanohub.org/resources/5448

Lecture 4A: Energy Exchange and Maxwell's Demon
02 Sep 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a "Landauerlike picture" where the Joule heating associated...
http://nanohub.org/resources/5271

Introduction: Nanoelectronics and the meaning of resistance
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
This lecture provides a brief overview of the fiveday short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all...
http://nanohub.org/resources/5210

Lecture 2A: Quantum Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the simple model from Lectures 1 into the fullfledged Nonequilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning...
http://nanohub.org/resources/5263

Lecture 2B: Quantum Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the simple model from Lectures 1 into the fullfledged Nonequilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning...
http://nanohub.org/resources/5268

Lecture 3A: Spin Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...
http://nanohub.org/resources/5269

Lecture 3B: Spin Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...
http://nanohub.org/resources/5270

Lecture 4B: Energy Exchange and Maxwell’s Demon
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a “Landauerlike picture” where the Joule heating...
http://nanohub.org/resources/5272

Lecture 5A: Correlations and Entanglement
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To relate the oneelectron picture used throughout these lectures to the more general but less tractable manyparticle picture that underlies it. We introduce this new viewpoint using...
http://nanohub.org/resources/5273

Lecture 5B: Correlations and Entanglement
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To relate the oneelectron picture used throughout these lectures to the more general but less tractable manyparticle picture that underlies it. We introduce this new viewpoint using...
http://nanohub.org/resources/5274