Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Papers (1-20 of 35)

  1. A Quantum Mechanical Analysis of Channel Access Geometry and Series Resistance in Nanoscale Transistors

    19 Oct 2006 | | Contributor(s):: Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom

    In this paper, we apply a two-dimensional quantum mechanical simulation scheme to study the effect of channel access geometries on device performance. This simulation scheme solves the non-equilibrium Green’s function equations self-consistently with Poisson’s equation and treats the effect of...

  2. A Three-Dimensional Quantum Simulation of Silicon Nanowire Transistors with the Effective-Mass Approximation

    30 Oct 2006 | | Contributor(s):: Jing Wang, POLIZZI ERIC, Mark Lundstrom

    The silicon nanowire transistor (SNWT) is a promising device structure for future integrated circuits, and simulations will be important for understanding its device physics and assessing its ultimate performance limits. In this work, we present a three-dimensional quantum mechanical simulation...

  3. Application of the Keldysh Formalism to Quantum Device Modeling and Analysis

    14 Jan 2008 | | Contributor(s):: Roger Lake

    The effect of inelastic scattering on quantum electron transport through layered semi-conductor structures is studied numerically using the approach based on the non-equilibrium Green's function formalism of Keldysh, Kadanoff, and Baym. The Markov assumption is not made, and the energy coordinate...

  4. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    27 Jun 2013 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-k gate...

  5. Carbon Nanotube Electronics: Modeling, Physics, and Applications

    30 Oct 2006 | | Contributor(s):: Jing Guo

    In recent years, significant progress in understanding the physics of carbon nanotube electronic devices and in identifying potential applications has occurred. In a nanotube, low bias transport can be nearly ballistic across distances of several hundred nanometers. Deposition of high-κ gate...

  6. Device Physics and Simulation of Silicon Nanowire Transistors

    28 Sep 2006 | | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  7. Device Physics and Simulation of Silicon Nanowire Transistors

    20 May 2006 | | Contributor(s):: Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

  8. Device Physics Studies of III-V and Silicon MOSFETS for Digital Logic

    25 Jun 2013 | | Contributor(s):: Himadri Pal

    III-V's are currently gaining a lot of attraction as possible MOSFET channel materials due to their high intrinsic mobility. Several challenges, however, need to be overcome before III-V's can replace silicon (Si) in extremely scaled devices. The effect of low density-of-states of III-V materials...

  9. Dissipative Quantum Transport in Semiconductor Nanostructures

    23 Dec 2011 | | Contributor(s):: Peter Greck

    In this work, we investigate dissipative quantum transport properties of an open system. After presenting the background of ballistic quantum transport calculations, a simple scattering mechanism, called Büttiker Probes, is introduced. Then, we assess the properties of the Büttiker Probe model...

  10. Efficiency Enhancement for Nanoelectronic Transport Simulations

    01 Feb 2014 | | Contributor(s):: Jun Huang

    PhD thesis of Jun HuangContinual technology innovations make it possible to fabricate electronic devices on the order of 10nm. In this nanoscale regime, quantum physics becomes critically important, like energy quantization effects of the narrow channel and the leakage currents due to tunneling....

  11. Electrical Conduction through Molecules

    08 Jul 2003 | | Contributor(s):: Ferdows Zahid, Magnus Paulsson, Supriyo Datta

    In recent years, several experimental groups have reported measurements of the current-voltage (I-V) characteristics of individual or small numbers of molecules. Even three-terminal measurements showing evidence of transistor action has been reported using carbon nanotubes as well as...

  12. Electrical Resistance: an Atomistic View

    26 Oct 2006 | | Contributor(s):: Supriyo Datta

    This tutorial article presents a “bottom-up” view of electrical resistance starting from something really small, like a molecule, and then discussing the issues that arise as we move to bigger conductors. Remark ably enough, no serious quantum mechanics is needed to understand electrical...

  13. Electron-Phonon and Electron-Electron Interactions in Quantum Transport

    14 Jan 2008 | | Contributor(s):: Gerhard Klimeck

    The objective of this work is to shed light on electron transport through sub-micron semi-conductor structures, where electronic state quantization, electron-electron interactions and electron-phonon interactions are important. We concentrate here on the most developed vertical quantum device,...

  14. Exploring New Channel Materials for Nanoscale CMOS

    27 Jun 2013 | | Contributor(s):: Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices. Novel process techniques, such as ALD, high-# dielectrics, and...

  15. Exploring New Channel Materials for Nanoscale CMOS

    21 May 2006 | | Contributor(s):: Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices.Novel process techniques, such as ALD, high-k dielectrics, and...

  16. Introduction to the Keldysh Nonequilibrium Green Function Technique

    06 Oct 2006 | | Contributor(s):: A. P. Jauho

    Keldysh nonequilibrium Green function technique is used very widely to describe transport phenomena in mesoscopic systems.The technique is somewhat subtle, and a rigorous treatment would require much more than we have at our disposal, see, for example, the text-bookk by Haug and Jauho [1].The...

  17. Modeling of Nanoscale Devices

    19 Oct 2006 | | Contributor(s):: M. P. Anantram, Mark Lundstrom, Dmitri Nikonov

    We aim to provide engineers with an introductionto the nonequilibriumGreen’s function (NEGF) approach, which is a powerful conceptual tool and a practical analysismethod to treat nanoscale electronic devices with quantum mechanicaland atomistic effects. We first review the basis for the...

  18. Modeling Quantum Transport in Nanoscale Transistors

    30 Oct 2006 | | Contributor(s):: ramesh venugopal

    As critical transistor dimensions scale below the 100 nm (nanoscale) regime, quan- tum mechanical effects begin to manifest themselves and affect important device performance metrics. Therefore, simulation tools which can be applied to design nanoscale transistors in the future, require new...

  19. Modular Approach to Spintronics

    28 Apr 2015 | | Contributor(s):: Kerem Yunus Camsari

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building...

  20. Multidimensional nanoscale device modeling: the finite element method applied to the non-equilibrium Green's function formalism

    31 Oct 2006 | | Contributor(s):: POLIZZI ERIC, Supriyo Datta

    This work deals with the modeling and the numerical simulation of quantum transport in multidimensional open nanoscale devices. The electron transport in the device is described using the Non-Equilibrium Green's Functions (NEGF) formalism and the variational form of the problem is solved using...