
nanoMOS 2.0: A Two Dimensional Simulator for Quantum Transport in DoubleGate MOSFETs
06 Oct 2006   Contributor(s):: Zhibin Ren, Ramesh Venugopal, Sebastien Goasguen, Supriyo Datta, Mark Lundstrom
A program to numerically simulate quantum transport in double gate MOSFETs is described. The program uses a Green’s function approach and a simple treatment of scattering based on the idea of socalled Büttiker probes. The double gate device geometry permits an efficient mode space approach that...

Simulating Quantum Transport in Nanoscale Transistors: Real versus ModeSpace Approaches
28 Sep 2006   Contributor(s):: Zhibin Ren, Supriyo Datta, Mark Lundstrom, Ramesh Venugopal, D. Jovanovic
In this paper, we present a computationally efficient, twodimensional quantum mechanical sim ulation scheme for modeling electron transport in thin body, fully depleted, nchannel, silicon oninsulator transistors in the ballistic limit. The proposed simulation scheme, which solves the...

Device Physics and Simulation of Silicon Nanowire Transistors
28 Sep 2006   Contributor(s)::
As the conventional silicon metaloxidesemiconductor fieldeffect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

Nanoscale Device Modeling: From MOSFETs to Molecules
20 Sep 2006   Contributor(s)::
This thesis presents a rigorous yet practical approach to model quantum transport in nanoscale electronic devices.As convetional metal oxide semiconductor devices shrink below the one hundred nanometer regime, quantum mechanical effects are beginning to play an increasingly important role in...

Towards MultiScale Modeling of Carbon Nanotube Transistors
20 Sep 2006   Contributor(s):: Jing Guo, Supriyo Datta, Mark Lundstrom, M. P. Anantram
Multiscale simulation approaches are needed in order to address scientific and technological questions in the rapidly developing field of carbon nanotube electronics. In this paper, we describe an effort underway to develop a comprehensive capability for multiscale simulation of carbon nanotube...

Quantum Transport for Nanostructures
17 Sep 2006   Contributor(s):: Mathieu Luisier
Nonequilibrium Green's function techniques, initiated by Schwinger and Kadanoff and Baym allow ones to study the time evolution of a manyparticle quantum sys tem. Knowing the 1particle Green's functions of a given system, one may evaluate 1particle quantities like carrier density or current....

Understanding Phonon Dynamics via 1D Atomic Chains
04 Apr 2006   Contributor(s):: Timothy S Fisher
Phonons are the principal carriers of thermal energy in semiconductors and insulators, and they serve a vital role in dissipating heat produced by scattered electrons in semiconductor devices. Despite the importance of phonons, rigorous understanding and inclusion of phonon dynamics in...

Quantum Transport: Atom to Transistor (Spring 2004)
23 May 2006   Contributor(s):: Supriyo Datta
Spring 2004Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents.Course Information WebsiteThe development of "nanotechnology" has made it possible to engineer materials and devices on a length scale as...

Exploring Electron Transfer with Density Functional Theory
11 Jun 2006   Contributor(s)::
This talk will highlight several illustrative applications of constrained density functionaltheory (DFT) to electron transfer dynamics in electronic materials. The kinetics of thesereactions are commonly expressed in terms of well known Marcus parameters (drivingforce, reorganization energy and...

NanoMOS 3.0: FirstTime User Guide
06 Jun 2006   Contributor(s):: Kurtis Cantley, Mark Lundstrom
This tutorial is an introduction to the nanoMOS simulation tool for new users. Descriptions of input and output parameters are included, along with new features associated with the Rappture interface. There are also descriptions of nine examples that are loadable in the new version to help the...

Logic Devices and Circuits on Carbon Nanotubes
05 Apr 2006   Contributor(s):: Joerg Appenzeller
Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nanoelectronics applications. Due to their unique properties enabling e.g. ballistic transport at roomtemperature over several hundred nanometers, high performance CN fieldeffect...

Exploring New Channel Materials for Nanoscale CMOS
21 May 2006   Contributor(s):: anisur rahman
The improved transport properties of new channel materials, such as Ge and IIIV semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the performance of nanoscale CMOS devices.Novel process techniques, such as ALD, highk dielectrics, and...

Device Physics and Simulation of Silicon Nanowire Transistors
20 May 2006   Contributor(s)::
As the conventional silicon metaloxidesemiconductor fieldeffect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the silicon nanowire transistor (SNWT) has attracted broad attention from both the semiconductor industry...

Nanowire
19 May 2006   Contributor(s):: HongHyun Park, Lang Zeng, Matthew Buresh, Siqi Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Clemens Heitzinger, Benjamin P Haley
Simulate 3D nanowire transport in the effective mass approximation with phonon scattering and 3D Poisson selfconsistent solution

Nanoscale Transistors: Advanced VLSI Devices (Introductory Lecture)
20 Apr 2006   Contributor(s):: Mark Lundstrom
Welcome to the ECE 612 Introductory/Overview lecture. This course examines the device physics of advanced transistors and the process, device, circuit, and systems considerations that enter into the development of new integrated circuit technologies.

Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond
13 Feb 2006   Contributor(s):: Mark Ratner, Abraham Nitzan,
Current experimental efforts are clarifying quite beautifully the nature of charge transport in socalled molecular junctions, in which a single molecule provides the channel for current flow between two electrodes. The theoretical modeling of such structures is challenging, because of the...

A TopDown Introduction to the NEGF Approach
14 Jun 2004   Contributor(s):: Mark Lundstrom
A TopDown Introduction to the NEGF Approach

Resonant Tunneling Diodes: an Exercise
06 Jan 2006   Contributor(s):: H.S. Philip Wong
This homework assignment was created by H.S. Philip Wong for EE 218 "Introduction to Nanoelectronics and Nanotechnology" (Stanford University). It includes a couple of simple "warm up" exercises and two design problems, intended to teach students the electronic properties of resonant tunneling...

Fundamentals of Nanoelectronics (Fall 2004)
01 Sep 2004   Contributor(s):: Supriyo Datta, Behtash Behinaein
Please Note: A newer version of this course is now availableand we would greatly appreciate your feedback regarding the new format and contents.Welcome to the ECE 453 lectures.The development of "nanotechnology" has made it possible to engineer material and devices on a length scale as small as...

Notes on the Ballistic MOSFET
08 Oct 2005   Contributor(s):: Mark Lundstrom
When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average distance between scattering events (the socalled meanfreepath, λ) is much shorter than the device. When...