Friday morning October 31, nanoHUB tools and home directories will be unavailable from 6 AM to noon (eastern time); we're getting a new file server! All tool sessions will be lost. Also, the web site will be unavailable for about 15 minutes sometime between 8-9 AM. close

Support

Support Options

Submit a Support Ticket

 

Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Resources (21-40 of 147)

  1. Surface scattering: Made simple

    03 Sep 2010 | Papers | Contributor(s): Dmitri Nikonov, Himadri Pal

    Surface scattering in a quantum well.

    http://nanohub.org/resources/9613

  2. ANGEL - A Nonequilibrium Green Function Solver for LEDs

    18 Jan 2010 | Tools | Contributor(s): sebastian steiger

    An MPI-parallelized implementation of 1-D NEGF for heterostructures. Includes off-diagonal scattering. Effective mass band structure for electrons and holes. The online tool only provides basic...

    http://nanohub.org/resources/angel

  3. Resonant Tunneling Diode operation

    22 Apr 2010 | Animations | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    A resonant tunneling diode (RTD) is a type of diode with a resonant tunneling structure that allows electrons to tunnel through various resonant states at certain energy levels. RTDs can be...

    http://nanohub.org/resources/8799

  4. Nanotechnology Animation Gallery

    22 Apr 2010 | Teaching Materials | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download....

    http://nanohub.org/resources/8882

  5. Nonequilibrium Green’s functions theory: Transport and optical gain in THz quantum cascade lasers

    26 Mar 2010 | Online Presentations | Contributor(s): Tillmann Christoph Kubis

    Quantum cascade lasers (QCLs) are promising sources of coherent THz radiation. However, state of the art THz-QCLs are still limited to cryogenic temperatures. The charge transport in these QCLs is...

    http://nanohub.org/resources/8708

  6. Nanoelectronic Modeling nanoHUB Demo 2: RTD simulation with NEGF

    09 Mar 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Demonstration of resonant tunneling diode (RTD) simulation using the RTD Simulation with NEGF Tool with a Hartree potential model showing potential profile, charge densities, current-voltage...

    http://nanohub.org/resources/8317

  7. Nanoelectronic Modeling nanoHUB Demo 1: nanoHUB Tool Usage with RTD Simulation with NEGF

    09 Mar 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Demonstration of running tools on the nanoHUB. Demonstrated is the RTD Simulation with NEGF Tool using a simple level-drop potential model and a more realistic device using a Thomas-Fermi...

    http://nanohub.org/resources/8318

  8. Nanoelectronic Modeling Lecture 26: NEMO1D -

    09 Mar 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    NEMO1D demonstrated the first industrial strength implementation of NEGF into a simulator that quantitatively simulated resonant tunneling diodes. The development of efficient algorithms that...

    http://nanohub.org/resources/8596

  9. Quantum transport in semiconductor nanostructures

    04 Mar 2010 | Papers | Contributor(s): Tillmann Christoph Kubis

    PhD thesis of Tillmann Christoph Kubis The main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the...

    http://nanohub.org/resources/8612

  10. ECET 499N Lecture 5a: Nanoelectronics III - Datta Lecture Review

    19 Feb 2010 | Online Presentations | Contributor(s): Helen McNally

    http://nanohub.org/resources/8521

  11. Nanoelectronic Modeling Lecture 22: NEMO1D - Motivation, History and Key Insights

    07 Feb 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    The primary objective of the NEMO-1D tool was the quantitative modeling of high performance Resonant Tunneling Diodes (RTDs). The software tool was intended for Engineers (concepts, fast...

    http://nanohub.org/resources/8389

  12. Nanoelectronic Modeling Lecture 21: Recursive Green Function Algorithm

    07 Feb 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    The Recursive Green Function (RGF) algorithms is the primary workhorse for the numerical solution of NEGF equations in quasi-1D systems. It is particularly efficient in cases where the device is...

    http://nanohub.org/resources/8388

  13. ANGEL - A Nonequilibrium Green's Function Solver for LEDs

    07 Feb 2010 | Downloads | Contributor(s): sebastian steiger

    Introducing ANGEL, a Nonequilibrium Green’s Function code aimed at describing LEDs. ANGEL uses a description close to the classic NEMO-1D paper (Lake et al., JAP 81, 7845 (1997)) to model quantum...

    http://nanohub.org/resources/8403

  14. ECE 495N: Fundamentals of Nanoelectronics Lecture Notes (Fall 2009)

    04 Feb 2010 | Teaching Materials | Contributor(s): Mehdi Salmani Jelodar, Supriyo Datta (editor)

    Lecture notes for the Fall 2009 teaching of ECE 495: Fundamentals of Nanoelectronics.

    http://nanohub.org/resources/8340

  15. Nanoelectronic Modeling Lecture 20: NEGF in a Quasi-1D Formulation

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Samarth Agarwal, Zhengping Jiang

    This lecture will introduce a spatial discretization scheme of the Schrödinger equation which represents a 1D heterostructure like a resonant tunneling diode with spatially varying band edges and...

    http://nanohub.org/resources/8203

  16. Nanoelectronic Modeling Lecture 19: Introduction to RTDs - Asymmetric Structures

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This lecture explores this effect in more detail by targeting an RTD that has a deliberate asymmetric structure. The collector barrier is chosen thicker than the emitter barrier. With this...

    http://nanohub.org/resources/8202

  17. Nanoelectronic Modeling Lecture 17: Introduction to RTDs - Relaxation Scattering in the Emitter

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Realistic RTDs will have nonlinear electrostatic potential in their emitter. Typically a triangular well is formed in the emitter due to the applied bias and the emitter thus contains discrete...

    http://nanohub.org/resources/8200

  18. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    25 Jan 2010 | Courses | Contributor(s): Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum...

    http://nanohub.org/resources/8086

  19. Scattering in NEGF: Made simple

    09 Nov 2009 | Papers | Contributor(s): Dmitri Nikonov, Himadri Pal, George Bourianoff

    Formalism for describing electron-phonon scattering, surface scattering, and spin relaxation is dervied for the Keldysh non-equilibrium Green's functions (NEGF) method. Approximation useful for...

    http://nanohub.org/resources/7772

  20. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | Workshops | Contributor(s): Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on...

    http://nanohub.org/resources/7113

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.