Support Options

Submit a Support Ticket


Tags: NEGF


The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Resources (121-140 of 149)

  1. Exploring Electron Transfer with Density Functional Theory

    11 Jun 2006 | Online Presentations | Contributor(s): Troy Van Voorhis

    This talk will highlight several illustrative applications of constrained density functional theory (DFT) to electron transfer dynamics in electronic materials. The kinetics of these reactions...

  2. NanoMOS 3.0: First-Time User Guide

    06 Jun 2006 | Online Presentations | Contributor(s): Kurtis Cantley, Mark Lundstrom

    This tutorial is an introduction to the nanoMOS simulation tool for new users. Descriptions of input and output parameters are included, along with new features associated with the Rappture...

  3. Logic Devices and Circuits on Carbon Nanotubes

    05 Apr 2006 | Online Presentations | Contributor(s): Joerg Appenzeller

    Over the last years carbon nanotubes (CNs) have attracted an increasing interest as building blocks for nano-electronics applications. Due to their unique properties enabling e.g. ballistic...

  4. Exploring New Channel Materials for Nanoscale CMOS

    21 May 2006 | Papers | Contributor(s): Anisur Rahman

    The improved transport properties of new channel materials, such as Ge and III-V semiconductors, along with new device designs, such as dual gate, tri gate or FinFETs, are expected to enhance the...

  5. Device Physics and Simulation of Silicon Nanowire Transistors

    20 May 2006 | Papers | Contributor(s): Jing Wang

    As the conventional silicon metal-oxide-semiconductor field-effect transistor (MOSFET) approaches its scaling limits, many novel device structures are being extensively explored. Among them, the...

  6. Nanowire

    19 May 2006 | Tools | Contributor(s): Hong-Hyun Park, Lang Zeng, Matthew Buresh, Siqi Wang, Gerhard Klimeck, Saumitra Raj Mehrotra, Clemens Heitzinger, Benjamin P Haley

    Simulate 3D nanowire transport in the effective mass approximation with phonon scattering and 3D Poisson self-consistent solution

  7. Nanoscale Transistors: Advanced VLSI Devices (Introductory Lecture)

    20 Apr 2006 | Online Presentations | Contributor(s): Mark Lundstrom

    Welcome to the ECE 612 Introductory/Overview lecture. This course examines the device physics of advanced transistors and the process, device, circuit, and systems considerations that enter into...

  8. Molecular Transport Structures: Elastic Scattering, Vibronic Effects and Beyond

    13 Feb 2006 | Online Presentations | Contributor(s): Mark A. Ratner, Abraham Nitzan, Misha Galperin

    Current experimental efforts are clarifying quite beautifully the nature of charge transport in so-called molecular junctions, in which a single molecule provides the channel for current flow...

  9. A Top-Down Introduction to the NEGF Approach

    14 Jun 2004 | Online Presentations | Contributor(s): Mark Lundstrom

    A Top-Down Introduction to the NEGF Approach

  10. Resonant Tunneling Diodes: an Exercise

    06 Jan 2006 | Teaching Materials | Contributor(s): H.-S. Philip Wong

    This homework assignment was created by H.-S. Philip Wong for EE 218 "Introduction to Nanoelectronics and Nanotechnology" (Stanford University). It includes a couple of simple "warm up" exercises...

  11. Fundamentals of Nanoelectronics (Fall 2004)

    01 Sep 2004 | Courses | Contributor(s): Supriyo Datta, Behtash Behinaein

    Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Welcome to the ECE 453 lectures. The...

  12. Notes on the Ballistic MOSFET

    08 Oct 2005 | Papers | Contributor(s): Mark Lundstrom

    When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter frequently from ionized impurities, phonons, surface roughness, etc. so that the average...

  13. Bandstructure in Nanoelectronics

    01 Nov 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation will highlight, for nanoelectronic device examples, how the effective mass approximation breaks down and why the quantum mechanical nature of the atomically resolved material...

  14. Simple Theory of the Ballistic MOSFET

    11 Oct 2005 | Online Presentations | Contributor(s): Mark Lundstrom

    Silicon nanoelectronics has become silicon nanoelectronics, but we still analyze, design, and think about MOSFETs in more or less in the same way that we did 30 years ago. In this talk, I...

  15. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding...

  16. 2004 Computational Materials Science Summer School

    07 Jun 2004 | Workshops

    This short course will explore a range of computational approaches relevant for nanotechnology.

  17. Review of Several Quantum Solvers and Applications

    11 Jun 2004 | Online Presentations | Contributor(s): Umberto Ravaioli

    Review of Several Quantum Solvers and Applications

  18. Numerical Aspects of NEGF: The Recursive Green Function Algorithm

    14 Jun 2004 | Online Presentations | Contributor(s): Gerhard Klimeck

    Numerical Aspects of NEGF: The Recursive Green Function Algorithm

  19. MATLAB Scripts for "Quantum Transport: Atom to Transistor"

    15 Mar 2005 | Downloads | Contributor(s): Supriyo Datta

    Tinker with quantum transport models! Download the MATLAB scripts used to demonstrate the physics described in Supriyo Datta's book Quantum Transport: Atom to Transistor. These simple models are...

  20. NanoMOS 2.5 Source Code Download

    22 Feb 2005 | Downloads | Contributor(s): Zhibin Ren, Sebastien Goasguen

    NanoMOS is a 2-D simulator for thin body (less than 5 nm), fully depleted, double-gated n-MOSFETs. A choice of five transport models is available (drift-diffusion, classical ballistic, energy..., a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.