Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

Resources (141-160 of 174)

  1. OMEN Nanowire Homework Problems

    24 Jan 2011 | | Contributor(s):: SungGeun Kim

    OMEN Nanowire homework problems: anyone who has gone through the first-time user guide of OMEN Nanowire and done the examples in the guide should be able to run simulations in these homework problems and find the answers to them.

  2. OMEN Nanowire Test Problems

    24 Jan 2011 | | Contributor(s):: SungGeun Kim

    This test is for students who have gone through the OMEN Nanowire first-time user guide and other learning materials related to nanowire FETs.

  3. OMEN Nanowire: solve the challenge

    05 Feb 2011 | | Contributor(s):: SungGeun Kim

    This document includes a challenging problems for OMEN Nanowire users. It challenges users to establish a nanowire transistor structure such that it satisfy the ITRS 2010 requirements.

  4. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | | Contributor(s):: Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding of the involved physics and the need to model realistically extended devices increases the complexity...

  5. Phonon Interactions in Single-Dopant-Based Transistors: Temperature and Size Dependence

    12 Nov 2015 | | Contributor(s):: Marc Bescond, Nicolas Cavassilas, Salim Berrada

    IWCE 2015 presentation. in this work we investigate the dependence of electron-phonon scattering in single dopant-based nanowire transistor with respect to temperature and dimensions. we use a 3d real-space non-equilibrium green': ; s function (negf) approach where electron-phonon...

  6. Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices

    25 Jun 2013 | | Contributor(s):: raseong kim

    For the past few decades, transistors have been continuously scaled. Dimensions are now at the nanoscale, and device performance has dramatically improved. Nanotechnology is also achieving breakthroughs in thermoelectrics, which have suffered from low efficiencies for decades. As the device scale...

  7. Physics and Simulation of Quasi-Ballistic Transport in Nanoscale Transistors

    27 Jun 2013 | | Contributor(s):: Jung-Hoon Rhew

    The formidable progress in microelectronics in the last decade has pushed thechannel length of MOSFETs into decanano scale and the speed of BJTs into hundreds of gigahertz. This progress imposes new challenges on device simulation as the essential physics of carrier transport departs that of...

  8. Quantum and Atomistic Effects in Nanoelectronic Transport Devices

    26 Jun 2013 | | Contributor(s):: Neophytos Neophytou

    As devices scale towards atomistic sizes, researches in silicon electronic device technology are investigating alternative structures and materials. As predicted by the International Roadmap for Semiconductors, (ITRS), structures will evolve from planar devices into devices that include 3D...

  9. Quantum and Thermal Effects in Nanoscale Devices

    18 Sep 2008 | | Contributor(s):: Dragica Vasileska

    To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the self-consistent fields and the hydrodynamic equations for acoustic and optical phonons. The phonon...

  10. Quantum Transport for Nanostructures

    17 Sep 2006 | | Contributor(s):: Mathieu Luisier

    Nonequilibrium Green's function techniques, initiated by Schwinger and Kadanoff and Baym allow ones to study the time evolution of a many-particle quantum sys- tem. Knowing the 1-particle Green's functions of a given system, one may evaluate 1-particle quantities like carrier density or...

  11. Quantum transport in semiconductor nanostructures

    03 Mar 2010 | | Contributor(s):: Tillmann Christoph Kubis

    PhD thesis of Tillmann Christoph KubisThe main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function...

  12. Quantum Transport: Atom to Transistor (Spring 2004)

    23 May 2006 | | Contributor(s):: Supriyo Datta

    Spring 2004 Please Note: A newer version of this course is now available and we would greatly appreciate your feedback regarding the new format and contents. Course Information Website The development of "nanotechnology" has made it possible to engineer materials and devices...

  13. recursive algorithm for NEGF in Matlab

    13 Nov 2006 | | Contributor(s):: Dmitri Nikonov, Siyu Koswatta

    This zip-archive contains two Matlab functions for the recursive solution of the partial matrix inversion and partial 3-matrix multiplication used in the non-equilibrium Green’s function (NEGF) method.recuresealg3d.m- works for 3-diagonal matricesrecuresealgblock3d.m- works for 3-block-diagonal...

  14. Recursive algorithm for NEGF in Python GPU version

    02 Feb 2021 | | Contributor(s):: Ning Yang, Tong Wu, Jing Guo

    This folder contains two Python functions for GPU-accelerated simulation, which implements the recursive algorithm in the non-equilibrium Green’s function (NEGF) formalism. Compared to the matlab implementation [1], the GPU version allows massive parallel running over many cores on GPU...

  15. Resistance of a Molecule

    29 Apr 2003 | | Contributor(s):: Magnus Paulsson, Ferdows Zahid, Supriyo Datta

    In recent years, several experimental groups have reported measurements of the current-voltage (I-V) characteristics of individual or small numbers of molecules. Even three-terminal measurements showing evidence of transistor action has been reported using carbon nanotubes [1, 2] as well as...

  16. Resonant Tunneling Diode operation

    09 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    A resonant tunneling diode (RTD) is a type of diode with a resonant tunneling structure that allows electrons to tunnel through various resonant states at certain energy levels. RTDs can be fabricated using many different types of materials (such as III-V, type IV, II-VI semiconductors) and...

  17. Resonant Tunneling Diode Simulation with NEGF

    18 Aug 2008 | | Contributor(s):: Hong-Hyun Park, Zhengping Jiang, Arun Goud Akkala, Sebastian Steiger, Michael Povolotskyi, Tillmann Christoph Kubis, Jean Michel D Sellier, Yaohua Tan, SungGeun Kim, Mathieu Luisier, Samarth Agarwal, Michael McLennan, Gerhard Klimeck, Junzhe Geng

    Simulate 1D RTDs using NEGF.

  18. Resonant Tunneling Diode Simulation with NEGF: First-Time User Guide

    20 May 2009 | | Contributor(s):: Samarth Agarwal, Gerhard Klimeck

    This first-time user guide for Resonant Tunneling Diode Simulation with NEGF provides some fundamental concepts regarding RTDs along with details on how device geometry and simulation parameters influence current and charge distribution inside the device.NCN@Purdue

  19. Resonant Tunneling Diodes: an Exercise

    06 Jan 2006 | | Contributor(s):: H.-S. Philip Wong

    This homework assignment was created by H.-S. Philip Wong for EE 218 "Introduction to Nanoelectronics and Nanotechnology" (Stanford University). It includes a couple of simple "warm up" exercises and two design problems, intended to teach students the electronic properties...

  20. Review of Several Quantum Solvers and Applications

    11 Jun 2004 | | Contributor(s):: Umberto Ravaioli

    Review of Several Quantum Solvers and Applications