
ECE 659 Lecture 38.0: Correlations and Entanglement
04 May 2009  Online Presentations  Contributor(s): Supriyo Datta
This lecture is from the series of lectures
Nanoelectronics and the Meaning of Resistance.
http://nanohub.org/resources/6731

ECE 659 Lecture 36: Law of Equilibrium
01 May 2009  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6724

Asem S. Amar El Arabi
http://nanohub.org/members/35832

how do we impose G
Open  Responses: 1
According to KadanoffBaym book, formula (22), one has:
= i G
http://nanohub.org/answers/question/254

ECE 659 Lecture 18: NEGF Equations
03 Mar 2009  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6427

Thermoelectric Power Factor Calculator for Superlattices
08 Jan 2009  Tools  Contributor(s): Terence Musho, Greg Walker
Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in 1D Superlattice Structures using NonEquilibrium Green's Functions
http://nanohub.org/resources/slpf

OMEN Nanowire
15 Dec 2008  Tools  Contributor(s): SungGeun Kim, Mathieu Luisier, Benjamin P Haley, Abhijeet Paul, Saumitra Raj Mehrotra, Gerhard Klimeck, Hesameddin Ilatikhameneh
Fullband 3D quantum transport simulation in nanowire structure
http://nanohub.org/resources/omenwire

ECE 495N Lecture 34: NEGF Continued I
10 Dec 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6019

ECE 495N Lecture 35: NEGF Continued II
10 Dec 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6022

ECE 495N Lecture 33: NonEquilibrium Green's Function (NEGF) Method
04 Dec 2008  Online Presentations  Contributor(s): Supriyo Datta
http://nanohub.org/resources/6008

NanoTCAD ViDES
17 Oct 2008  Tools  Contributor(s): Gianluca Fiori, Giuseppe Iannaccone
3D Poisson/NEGF solver for the simulation of Graphene Nanoribbon, Carbon nanotubes and Silicon Nanowire Transistors.
http://nanohub.org/resources/vides

Quantum and Thermal Effects in Nanoscale Devices
18 Sep 2008  Online Presentations  Contributor(s): Dragica Vasileska
To investigate lattice heating within a Monte Carlo device simulation framework, we simultaneously solve the Boltzmann transport equation for the electrons, the 2D Poisson equation to get the...
http://nanohub.org/resources/5448

Nanoelectronics and the meaning of resistance: Course Handout and Exercises
02 Sep 2008  Teaching Materials  Contributor(s): Supriyo Datta
Handout with reference list, MATLAB scripts and exercise problems.
http://nanohub.org/resources/5358

Lecture 4A: Energy Exchange and Maxwell's Demon
02 Sep 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a "Landauerlike picture" where the Joule heating associated...
http://nanohub.org/resources/5271

Introduction: Nanoelectronics and the meaning of resistance
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
This lecture provides a brief overview of the fiveday short course whose purpose is to introduce a unified viewpoint for a wide variety of nanoscale electronic devices of great interest for all...
http://nanohub.org/resources/5210

Lecture 2A: Quantum Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the simple model from Lectures 1 into the fullfledged Nonequilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning...
http://nanohub.org/resources/5263

Lecture 2B: Quantum Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the simple model from Lectures 1 into the fullfledged Nonequilibrium Green’s Function (NEGF) – Landauer model by introducing a spatial grid of N points and turning...
http://nanohub.org/resources/5268

Lecture 3A: Spin Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...
http://nanohub.org/resources/5269

Lecture 3B: Spin Transport
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To extend the model from Lectures 1 and 2 to include electron spin. Every electron is an elementary “magnet” with two states having opposite magnetic moments. Usually this has no...
http://nanohub.org/resources/5270

Lecture 4B: Energy Exchange and Maxwell’s Demon
20 Aug 2008  Online Presentations  Contributor(s): Supriyo Datta
Objective: To incorporate distributed energy exchange processes into the previous models from lectures 1 through 3 which are based on a “Landauerlike picture” where the Joule heating...
http://nanohub.org/resources/5272