Support

Support Options

Submit a Support Ticket

 

Tags: NEGF

Description

The non-equilibrium Greens function (NEGF) formalism provides a powerful conceptual and computational framework for treating quantum transport in nanodevices. It goes beyond the Landauer approach for ballistic, non-interacting electronics to include inelastic scattering and strong correlation effects at an atomistic level.

Check out Supriyo Datta's NEGF page for more information, or browse through the various resources listed below.

All Categories (61-80 of 323)

  1. Lecture 2: Graphene Fundamentals

    22 Sep 2009 | Online Presentations | Contributor(s): Supriyo Datta

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7384

  2. Lecture 6: Graphene PN Junctions

    22 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction Electron optics in graphene Transmission across NP junctions Conductance of PN and NN junctions Discussion Summary Network for Computational Nanotechnology, Intel...

    http://nanohub.org/resources/7423

  3. Lecture 3: Low Bias Transport in Graphene: An Introduction

    18 Sep 2009 | Online Presentations | Contributor(s): Mark Lundstrom

    Outline: Introduction and Objectives Theory Experimental approach Results Discussion Summary Lecture notes are available for this lecture. Network for Computational...

    http://nanohub.org/resources/7401

  4. From Semi-Classical to Quantum Transport Modeling

    10 Aug 2009 | Series | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is...

    http://nanohub.org/resources/7221

  5. From Semi-Classical to Quantum Transport Modeling: Quantum Transport - Usuki Method and Theoretical Description of Green's Functions

    10 Aug 2009 | Teaching Materials | Contributor(s): Dragica Vasileska

    This set of powerpoint slides series provides insight on what are the tools available for modeling devices that behave either classically or quantum-mechanically. An in-depth description is...

    http://nanohub.org/resources/7218

  6. Jul 20 2009

    2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    Electronics from the Bottom Up seeks to bring a new perspective to engineering education -- one that is designed to help realize the opportunities of nanotechnology. Ever since the birth of...

    http://nanohub.org/events/details/231

  7. RTD with NEGF Demonstration: Basic RTD Asymmetric

    12 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck

    This video shows the analysis of a 2 barrier Resonant Tunneling Diode (RTD) over 21 bias points using RTDLab. Several powerful features of this tool are demonstrated.

    http://nanohub.org/resources/6812

  8. OMEN Nanowire Demonstration: Nanowire Simulation and Analysis

    11 Jun 2009 | Animations | Contributor(s): Gerhard Klimeck, Benjamin P Haley

    This video shows the simulation and analysis of a nanowire using OMEN Nanowire. Several powerful analytic features of this tool are demonstrated.

    http://nanohub.org/resources/6833

  9. Resonant Tunneling Diode Simulation with NEGF: First-Time User Guide

    01 Jun 2009 | Teaching Materials | Contributor(s): Samarth Agarwal, Gerhard Klimeck

    This first-time user guide for Resonant Tunneling Diode Simulation with NEGF provides some fundamental concepts regarding RTDs along with details on how device geometry and simulation parameters...

    http://nanohub.org/resources/6791

  10. Paralellizing MATLAB Code

    Info: I have been desperately trying to speed up an NEGF code recently, and having been informed that we have state-of-the-art clusters available to us, I set out to find out how to parallelize...

    http://nanohub.org/groups/super/wiki/ParalellizingMATLABCode

  11. CNT Cylindrical MOSFET Simulator Comments (Joshua Wood)

    The tool in question can be found here: [1] The main benefits of this tool is that it is the only NEGF CNT simulator that I have found on nanoHUB and that it runs reasonably fast for a NEGF...

    http://nanohub.org/groups/illinois_ece_539_advanced_theory_of_semiconductors_and_devices/wiki/CNTCylindricalMOSFETSimulatorComments

  12. ECE 659 Lecture 42: Summing Up

    04 May 2009 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/6734

  13. ECE 659 Lecture 38.0: Correlations and Entanglement

    04 May 2009 | Online Presentations | Contributor(s): Supriyo Datta

    This lecture is from the series of lectures Nanoelectronics and the Meaning of Resistance.

    http://nanohub.org/resources/6731

  14. ECE 659 Lecture 36: Law of Equilibrium

    01 May 2009 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/6724

  15. Asem S. Amar El Arabi

    http://nanohub.org/members/35832

  16. how do we impose G

    Open | Responses: 1

    According to Kadanoff-Baym book, formula (2-2), one has: = -i G

    http://nanohub.org/answers/question/254

  17. ECE 659 Lecture 18: NEGF Equations

    03 Mar 2009 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/6427

  18. Thermoelectric Power Factor Calculator for Superlattices

    18 Oct 2008 | Tools | Contributor(s): Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in 1D Superlattice Structures using Non-Equilibrium Green's Functions

    http://nanohub.org/resources/slpf

  19. OMEN Nanowire

    02 Sep 2008 | Tools | Contributor(s): SungGeun Kim, Mathieu Luisier, Benjamin P Haley, Abhijeet Paul, Saumitra Raj Mehrotra, Gerhard Klimeck

    Full-band 3D quantum transport simulation in nanowire structure

    http://nanohub.org/resources/omenwire

  20. ECE 495N Lecture 34: NEGF Continued I

    10 Dec 2008 | Online Presentations | Contributor(s): Supriyo Datta

    http://nanohub.org/resources/6019

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.