Tags: optics

Online Presentations (81-93 of 93)

  1. Optical and Spectral Imaging for Nanoscale Research

    25 Apr 2011 | | Contributor(s):: Chuck Ludwig

  2. PfFP Lecture 23: Invisible Light I

    14 Apr 2011 | | Contributor(s):: Jerry M. Woodall

  3. PfFP Lecture 25: Invisible Light III

    14 Apr 2011 | | Contributor(s):: Jerry M. Woodall

  4. PfFP Lecture 21: Light II

    14 Apr 2011 | | Contributor(s):: Jerry M. Woodall

  5. PfFP Lecture 20: Light I

    05 Apr 2011 | | Contributor(s):: Jerry M. Woodall

  6. A Half Century of Nonlinear Optics

    22 Mar 2011 | | Contributor(s):: Robert W. Boyd

    In this talk, we first present a review of the development of the field of nonlinear optics, and we then survey some areas of recent research including quantum imaging and implications of the ability to control the group velocity of light.

  7. Peanuts vs. Pyramids: Two Perspectives on MEMS

    29 Dec 2009 | | Contributor(s):: Stephen D. Senturia

    MEMS, the acronym for Micro-electromechanical Systems, also known simply as “Micro-systems,” come in two main types: commodity products (the peanuts) and MEMS-enabled products (the pyramids, or, more correctly, the inverted pyramids). The economics of scale greatly affect how these two classes...

  8. Illinois 2009 nano-biophotonics Summer School, Lecture 1: Optics, Introduction and Fundamentals

    20 Oct 2009 | | Contributor(s):: Kimani C Toussaint

    Optics, Introduction and FundamentalsTopics: What is Optics? Optics Theories EM Spectrum Index of Refraction Ray Optics FERMAT's Principle HERO's Principle Reflection Refraction Planar Boundaries Total Internal Reflection Spherical Lenses Thin Lens (Focusing) Thin Lens (Imaging) F Number and...

  9. Experiment vs. Modelling: What's the problem?

    10 Aug 2009 | | Contributor(s):: William L. Barnes

    Progress in plasmonics has been greatly assisted by developments in experimental techniques and in numerical modelling. This talk will look at some of the difficulties that emerge when comparisons are made between experiment and theory. Through the use of four examples I will illustrate what...

  10. The Optical Freqency Comb: A Remarkable Tool for Metrology, Science and Medical Diagnostics

    31 Dec 2008 | | Contributor(s):: John L. Hall

    The Optical Frequency Comb concept and technology exploded in 1999-2000 from the synthesis of advances in independent fields of Laser Stabilization, UltraFast Lasers, and NonLinear Optical Fibers. The Comb was developed first as a method for optical frequency measurement, enabling a...

  11. Metamaterials, Part 3: Cloaking and Transformation Optics

    01 May 2008 | | Contributor(s):: Vladimir M. Shalaev

    Part 3/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...

  12. Metamaterials, Part 2: Negative-Index, Nonlinear Optics and Super/Hyper-Lenses

    01 May 2008 | | Contributor(s):: Vladimir M. Shalaev

    Part 2/3. Metamaterials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials, thus enabling a family of new “meta-devices”. In these three lectures, we review this new emerging field and significant progress...

  13. Plasmonic Metamaterials: Unusual Optics and Applications

    28 Feb 2008 | | Contributor(s):: Igor Smolyaninov

    Surface plasmon-polaritons (or plasmons) are collective excitations of the conduction electrons and the electromagnetic field on the surface of such good metals as gold and silver. Near the frequency of surface plasmon resonance plasmons may perceive regular dielectrics as negative index...