Support

Support Options

Submit a Support Ticket

 

Tags: percolation

Description

In physics, chemistry and materials science, percolation concerns the movement and filtering of fluids through porous materials. During the last three decades, percolation theory, an extensive mathematical model of percolation, has brought new understanding and techniques to a broad range of topics in physics, materials science as well as geography.

Learn more about quantum dots from the many resources on this site, listed below. More information on Percolation can be found here.

All Categories (1-20 of 31)

  1. ECE 695A Lecture 24: Statistics of Oxide Breakdown - Cell percolation model

    21 Mar 2013 | Online Presentations | Contributor(s): Muhammad Alam

    Outline: Observations: Failure times are statistically distributed Models of Failure Distribution: Extrinsic vs. percolation Percolation theory of multiple Breakdown TDDB lifetime...

    http://nanohub.org/resources/17293

  2. Caterin Salas Redondo

    I'm from Riohacha, La Guajira (Colombia). I'm Electronic and Electrical Engineer, graduated of the "Technological of Bolivar Uniersity". I belong to the group GAICO since 2007. My principal topic...

    http://nanohub.org/members/58664

  3. Stick2D

    28 Feb 2011 | Tools | Contributor(s): Jiantong Li

    A Monte Carlo simulator to study percolation characteristics of two-dimensional stick systems

    http://nanohub.org/resources/stick2d

  4. Lecture 6: 3D Nets in a 3D World: Bulk Heterostructure Solar Cells

    27 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Introduction: 

definitions
 and
 review
 Reaction
 diffusion
 in 
fractal 
volumes Carrier
 transport
 in 
BH
 solar 
cells All
 phase
 transitions 
are
 not
 fractal Conclusions

    http://nanohub.org/resources/7174

  5. Lecture 5: 2D Nets in a 3D World: Basics of Nanobiosensors and Fractal Antennae

    27 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Background:
 A
 different
 type
 of
 transport
 problem
 Example:
 Classical
 biosensors Fractal 
dimension
 and
 cantor
 transform Example:
 fractal...

    http://nanohub.org/resources/7173

  6. Lecture 4: Stick Percolation and Nanonet Electronics

    26 Oct 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Outline: Stick percolation and nanonet transistors Short channel nanonet transistors Long channel nanonet transistors Transistors at high voltages Conclusions

    http://nanohub.org/resources/7172

  7. 2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    22 Sep 2009 | Workshops | Contributor(s): Supriyo Datta, Mark Lundstrom, Muhammad A. Alam, Joerg Appenzeller

    The school will consist of two lectures in the morning on the Nanostructured Electronic Devices: Percolation and Reliability and an afternoon lecture on Graphene Physics and Devices. A hands on...

    http://nanohub.org/resources/7113

  8. Lecture 1: Percolation and Reliability of Electronic Devices

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7169

  9. Lecture 2: Threshold, Islands, and Fractals

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7170

  10. Lecture 3: Electrical Conduction in Percolative Systems

    17 Sep 2009 | Online Presentations | Contributor(s): Muhammad A. Alam

    Network for Computational Nanotechnology, Intel Foundation

    http://nanohub.org/resources/7171

  11. Nanostructured Electronic Devices: Percolation and Reliability

    17 Sep 2009 | Courses | Contributor(s): Muhammad A. Alam

    In this series of lectures introduces a simple theoretical framework for treating randomness and variability in emerging nanostructured electronic devices for wide ranging applications – all...

    http://nanohub.org/resources/7168

  12. Jul 20 2009

    2009 NCN@Purdue Summer School: Electronics from the Bottom Up

    Electronics from the Bottom Up seeks to bring a new perspective to engineering education -- one that is designed to help realize the opportunities of nanotechnology. Ever since the birth of...

    http://nanohub.org/events/details/231

  13. Energy and Nanoscience A More Perfect Union

    29 Mar 2009 | Online Presentations | Contributor(s): Mark A. Ratner

    Huge problems of energy and sustainability confront the science/engineering community, mankind, and our planet. The energy problem comes in many dimensions, including supply, demand, conservation,...

    http://nanohub.org/resources/6554

  14. Lecture 2: Thresholds, Islands, and Fractals

    04 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    Three basic concepts of the percolation theory – namely, percolation threshold, cluster size distribution, and fractal dimension – are defined and methods to calculate them are illustrated via...

    http://nanohub.org/resources/5698

  15. Lecture 1: Percolation in Electronic Devices

    04 Nov 2008 | Online Presentations | Contributor(s): Muhammad A. Alam

    Even a casual review of modern electronics quickly convinces everyone that randomness of geometrical parameters must play a key role in understanding the transport properties. Despite the...

    http://nanohub.org/resources/5697

  16. Percolation Theory

    03 Nov 2008 | Courses | Contributor(s): Muhammad A. Alam

    The electronic devices these days have become so small that the number of dopant atoms in the channel of a MOFET transistor, the number of oxide atoms in its gate dielectric, the number silicon-...

    http://nanohub.org/resources/5660

  17. Biswajit Ray

    Biswajit Ray is a Phd student in the school of Electrical and Computer Engineering, Purdue university, West Lafayette, Indiana. He works with Prof. Muhammad Ashraf Alam in the area of polymer...

    http://nanohub.org/members/16643

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.