Tags: quantum computing

Description

First proposed in the 1970s, quantum computing relies on quantum physics by taking advantage of certain quantum physics properties of atoms or nuclei that allow them to work together as quantum bits, or qubits, to be the computer's processor and memory. By interacting with each other while being isolated from the external environment, qubits can perform certain calculations exponentially faster than conventional computers.

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum computing can be found here.

All Categories (1-20 of 49)

  1. Which are the best universities in the world for doing MS+PhD in the field of Nanoelectronics based experimental quantum computing?

    Open | Responses: 0

    http://nanohub.org/answers/question/1374

  2. A Primer on Quantum Computing

    18 Oct 2006 | Online Presentations | Contributor(s): David D. Nolte

    Quantum computers would represent an exponential increase in computing power...if they can be built. This tutorial describes the theoretical background to quantum computing, its potential for...

    http://nanohub.org/resources/1897

  3. Aasrith Ganti

    http://nanohub.org/members/73075

  4. Adam Marc Munder

    http://nanohub.org/members/165406

  5. An Introduction to Quantum Computing

    12 Sep 2008 | Online Presentations | Contributor(s): Edward Gerjuoy

    Quantum mechanics, as formulated more than 80 years ago by Schrodinger, Heisenberg, Dirac and other greats, is a wholly sufficient foundation for its modern interrelated subfields of quantum...

    http://nanohub.org/resources/4778

  6. Atomistic Modeling of Nano Devices: From Qubits to Transistors

    13 Apr 2016 | Online Presentations | Contributor(s): Rajib Rahman

    In this talk, I will describe such a framework that can capture complex interactions ranging from exchange and spin-orbit-valley coupling in spin qubits to non-equilibrium charge transport in...

    http://nanohub.org/resources/23993

  7. May 26 2017

    Building a Quantum Computer 101

    BUILDING A QUANTUM COMPUTER 101 Friday, May 26, 2017 11 a.m.-12 p.m. Burton D. Morgan Center for Entrepreneurship, Room 121 Open to the public About the presentation:...

    http://nanohub.org/events/details/1559

  8. Charles Taylor Patrick Gillespie

    Mr. Charles Taylor Patrick Gillespie is currently pursuing a LL.M. in Intellectual Property at Santa Clara University School of Law and focusing on Nanotechnology and the Law. He graduated from...

    http://nanohub.org/members/33082

  9. Chirag Jayant Patil

    http://nanohub.org/members/75942

  10. Control of Exchange Interaction in a Double Dot System

    13 Jul 2004 | Online Presentations | Contributor(s): Mike Stopa

    As Rolf Landauer observed in 1960, information is physical. As a consequence, the transport and processing of information must obey the laws of physics. It therefore makes sense to base the laws...

    http://nanohub.org/resources/152

  11. Einstein/Bohr Debate and Quantum Computing

    13 Oct 2005 | Online Presentations | Contributor(s): Karl Hess

    This presentation deals with the Einstein/Bohr Debate and Quantum Computing.

    http://nanohub.org/resources/384

  12. High Precision Quantum Control of Single Donor Spins in Silicon

    14 Jan 2008 | Papers | Contributor(s): Rajib Rahman, marta prada, Gerhard Klimeck, Lloyd Hollenberg

    The Stark shift of the hyperfine coupling constant is investigated for a P donor in Si far below the ionization regime in the presence of interfaces using tight-binding and band minima basis...

    http://nanohub.org/resources/3829

  13. Jose Carlos Perez

    I'm a graduate student at the Institute of Optics, University of Rochester, NY. Born and raised in a small Central American nation named Honduras, I want to serve my country and the rest of the...

    http://nanohub.org/members/71679

  14. Joseph M. Cychosz

    Joe Cychosz began his computing career in 1974 at the University of Illinois where he became an electrical engineer by degree and a programmer by trade while working with the Control Data computer...

    http://nanohub.org/members/4994

  15. MCW07 A Quantum Open Systems Approach to Molecular-Scale Devices

    25 Feb 2008 | Online Presentations | Contributor(s): Yongqiang Xue

    Experimental advances in electrically and optically probing individual molecules have provided new insights into the behavior of single quantum objects and their interaction with the...

    http://nanohub.org/resources/3090

  16. MCW07 Physics of Contact Induced Current Asymmetry in Transport Through Molecules

    25 Feb 2008 | Online Presentations | Contributor(s): Bhaskaran Muralidharan, Owen D. Miller, Neeti Kapur, Avik Ghosh, Supriyo Datta

    We first outline the qualitatively different physics involved in the charging-induced current asymmetries in molecular conductors operating in the strongly coupled (weakly interacting)...

    http://nanohub.org/resources/3073

  17. Nanotechnology: Silicon Technology, Bio-molecules and Quantum Computing

    19 Aug 2005 | Online Presentations | Contributor(s): Karl Hess

    Nanotechnology: Silicon Technology, Bio-molecules and Quantum Computing

    http://nanohub.org/resources/387

  18. Nikhil Chand Kashyap Chitta

    http://nanohub.org/members/155131

  19. Northwestern University Initiative for Teaching Nanoscience

    20 Aug 2008 | Tools | Contributor(s): Baudilio Tejerina

    This package allows users to study and analyze of molecular properties using various electronic structure methods.

    http://nanohub.org/resources/nuitns

  20. Oxide Systems – An Answer to the Qubit Problem?

    08 Mar 2016 | Online Presentations | Contributor(s): Sudhakar Yarlagadda

    One can produce new oxide-based devices by exploiting their tunability, rich physics, and coupling between the various degrees of freedom (such as charge, lattice, spin, etc.). We propose that...

    http://nanohub.org/resources/23700