Today's maintenance is complete. close

Support

Support Options

Submit a Support Ticket

 

Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (1-20 of 87)

  1. Excited State Spectroscopy of a Quantum Dot Molecule

    11 Jan 2013 | Online Presentations | Contributor(s): Muhammad Usman

    Atomistic electronic structure calculations are performed to study the coherent inter-dot couplings of the electronic states in a single InGaAs quantum dot molecule. The experimentally observed...

    http://nanohub.org/resources/12686

  2. NEMO5 Tutorial 5A: Devi ce Simulation - Quantum Dots

    17 Jul 2012 | Online Presentations | Contributor(s): Jean Michel D Sellier

    This presentation introduces the capabilities of NEMO5 to simulate quantum dots.

    http://nanohub.org/resources/14705

  3. Quantum Dot based Photonic Devices

    01 Apr 2012 | Online Presentations | Contributor(s): Muhammad Usman

    Deployment of nanometer-sized semiconductor quantum dots (QDs) in the active region of photonic devices such as lasers, semiconductor optical amplifiers (SOA's), photo-detectors etc. for the...

    http://nanohub.org/resources/13532

  4. Polarization Response of Multi-layer InAs Quantum Dot Stacks

    25 Oct 2011 | Online Presentations | Contributor(s): Muhammad Usman

    Recent experimental measurements, without any theoretical guidance, showed that isotropic polarization response can be achieved by increasing the number of QD layers in a QD stack. In this work,...

    http://nanohub.org/resources/12312

  5. BME 695L Lecture 5: Nanomaterials for Core Design

    03 Oct 2011 | Online Presentations | Contributor(s): James Leary

    See references below for related reading. 5.1      Introduction 5.1.1    core building blocks 5.1.2    functional...

    http://nanohub.org/resources/12057

  6. The History of Semiconductor Heterostructures Research: From Early Double Heterostructure Concept to Modern Quantum Dot Structures

    11 Jul 2011 | Online Presentations | Contributor(s): Zhores I. Alferov

    It would be very difficult today to imagine solid-state physics without semiconductor heterostructures. Semiconductor heterostructures and especially double heterostructures, including quantum...

    http://nanohub.org/resources/11436

  7. Illinois ECE598XL Semiconductor Nanotechnology - 3 - Quantum Dots: Formation

    27 Jun 2011 | Online Presentations | Contributor(s): Xiuling Li

    http://nanohub.org/resources/11404

  8. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors

    http://nanohub.org/resources/11049

  9. Atomistic Modeling and Simulation Tools for Nanoelectronics and their Deployment on nanoHUB.org

    16 Dec 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    At the nanometer scale the concepts of device and material meet and a new device is a new material and vice versa. While atomistic device representations are novel to device physicists, the...

    http://nanohub.org/resources/10199

  10. Nanoelectronic Modeling Lecture 34: Alloy Disorder in Quantum Dots

    05 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses the consequences of Alloy Disorder in strained InGaAs Quantum Dots Reminder of the origin of bandstructure and bandstructure engineering What happens when...

    http://nanohub.org/resources/9279

  11. Nanoelectronic Modeling Lecture 32: Strain Layer Design through Quantum Dot TCAD

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Muhammad Usman

    This presentation demonstrates the utilization of NEMO3D to understand complex experimental data of embedded InAs quantum dots that are selectively overgrown with a strain reducing InGaAs layer....

    http://nanohub.org/resources/9272

  12. Nanoelectronic Modeling Lecture 31a: Long-Range Strain in InGaAs Quantum Dots

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation demonstrates the importance of long-range strain in quantum dots Numerical analysis of the importance of the buffer around the central quantum dot - local band edges –...

    http://nanohub.org/resources/9270

  13. Nanoelectronic Modeling Lecture 29: Introduction to the NEMO3D Tool

    04 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation provides a very high level software overview of NEMO3D. The items discussed are: Modeling Agenda and Motivation Tight-Binding Motivation and basic formula...

    http://nanohub.org/resources/8599

  14. Nanoelectronic Modeling Lecture 28: Introduction to Quantum Dots and Modeling Needs/Requirements

    20 Jul 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation provides a very high level software overview of NEMO1D. Learning Objectives: This lecture provides a very high level overview of quantum dots. The main issues and...

    http://nanohub.org/resources/8598

  15. Nanoelectronic Modeling: Exercises 1-3 - Barrier Structures, RTDs, and Quantum Dots

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Exercises: Barrier Structures Uses: Piece-Wise Constant Potential Barrier Tool Resonant Tunneling Diodes Uses: Resonant Tunneling Diode Simulation with NEGF • Hartree calculation •...

    http://nanohub.org/resources/8259

  16. Nanobiotechnology – a different perspective

    22 Jul 2008 | Online Presentations | Contributor(s): Murali Sastry

    The study of the synthesis, exotic properties, assembly/packaging and potential commercial application of nanomaterials is an extremely important topic of research that is expected to have...

    http://nanohub.org/resources/4807

  17. Nano Carbon: From ballistic transistors to atomic drumheads

    14 May 2008 | Online Presentations | Contributor(s): Paul L. McEuen

    Carbon takes many forms, from precious diamonds to lowly graphite. Surprisingly, it is the latter that is the most prized by nano physicists. Graphene, a single layer of graphite, can serve as an...

    http://nanohub.org/resources/4398

  18. Bionanotechnology: a different perspective

    30 Apr 2008 | Online Presentations | Contributor(s): Murali Sastry

    The study of the synthesis, exotic properties, assembly/packaging and potential commercial application of nanomaterials is an extremely important topic of research that is expected to have...

    http://nanohub.org/resources/4402

  19. Introduction to Quantum Dot Lab

    31 Mar 2008 | Online Presentations | Contributor(s): Sunhee Lee, Hoon Ryu, Gerhard Klimeck

    The nanoHUB tool "Quantum Dot Lab" allows users to compute the quantum mechanical "particle in a box" problem for a variety of different confinement shapes, such as boxes, ellipsoids, disks, and...

    http://nanohub.org/resources/4194

  20. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | Online Presentations | Contributor(s): Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those...

    http://nanohub.org/resources/3988

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.