Support Options

Submit a Support Ticket


Tags: quantum dots


Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Presentation Materials (1-3 of 3)

  1. Quantitative Modeling and Simulation of Quantum Dots

    18 Apr 2011 | Presentation Materials | Contributor(s): Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is...

  2. Structure and Morphology of Silicon-Germanium Thin Films

    07 Feb 2015 | Presentation Materials | Contributor(s): Brian Demczyk

    This presentation describes the growth of (Si,Ge & SiGe) thin films on Si and Ge (001) and (111) substrates by ultrahigh vacuum chemical vapor deposition (UHVCVD). Thin films were...

  3. Visualization of and Educational Tool for Quantum Dots

    15 Aug 2004 | Presentation Materials | Contributor(s): Aaron Christensen, Adrian Rios

    Quantum dots (QDs) are confined structures made of metals and semiconductors that are capable of containing free electrons.The ability to visualize these small devices is advantageous in..., a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.