nanoHUB.org will be intermittently unavailable Saturday, January 3, for scheduled maintenance. All tool sessions will be expired. We apologize for any inconvenience that may occur. close

Support

Support Options

Submit a Support Ticket

 

Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (81-87 of 87)

  1. HPC and Visualization for multimillion atom simulations

    21 Jun 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation gives an overview of the HPC and visulaization efforts involving multi-million atom simulations for the June 2005 NSF site visit to the Network for Computational Nanotechnology.

    http://nanohub.org/resources/187

  2. 2005 Molecular Conduction and Sensors Workshop

    27 Jul 2005 | Workshops

    This is the 3rd in a series of annual workshops on Molecular Conduction. The prior workshops have been at Purdue University, W. Lafayette, IN (2003) and Nothwestern University, Evanston, IL...

    http://nanohub.org/resources/140

  3. SEQUAL 2.1 Source Code Download

    09 Mar 2005 | Downloads | Contributor(s): Michael McLennan

    SEQUAL 2.1 is a device simulation program that computes Semiconductor Electrostatics by Quantum Analysis. Given a device, SEQUAL will compute the electron density and the current density using a...

    http://nanohub.org/resources/104

  4. Single Electron Switching with Nano-Electromechanical Systems and Applications in Ion Channel Transport

    01 Nov 2004 | Online Presentations | Contributor(s): Robert Blick

    Taking classes in physics always starts with Newtonian mechanics. In reducing the size of the objects considered however the transition into the quantum mechanical regime has to occur. The...

    http://nanohub.org/resources/173

  5. Visualization of and Educational Tool for Quantum Dots

    15 Aug 2004 | Presentation Materials | Contributor(s): Aaron Christensen, Adrian Rios

    Quantum dots (QDs) are confined structures made of metals and semiconductors that are capable of containing free electrons.The ability to visualize these small devices is advantageous in...

    http://nanohub.org/resources/743

  6. Control of Exchange Interaction in a Double Dot System

    05 Feb 2004 | Online Presentations | Contributor(s): Mike Stopa

    As Rolf Landauer observed in 1960, information is physical. As a consequence, the transport and processing of information must obey the laws of physics. It therefore makes sense to base the laws...

    http://nanohub.org/resources/152

  7. Quantum-dot Cellular Automata

    24 Nov 2003 | Online Presentations | Contributor(s): Craig S. Lent

    The multiple challenges presented by the problem of scaling transistor sizes are all related to the fact that transistors encode binary information by the state of a current switch. What is...

    http://nanohub.org/resources/148

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.