Support

Support Options

Submit a Support Ticket

 

Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (41-60 of 87)

  1. Nanoelectronic Modeling Lecture 34: Alloy Disorder in Quantum Dots

    05 Aug 2010 | Online Presentations | Contributor(s): Gerhard Klimeck, Timothy Boykin, Chris Bowen

    This presentation discusses the consequences of Alloy Disorder in strained InGaAs Quantum Dots Reminder of the origin of bandstructure and bandstructure engineering What happens when...

    http://nanohub.org/resources/9279

  2. Nanoelectronic Modeling: Exercises 1-3 - Barrier Structures, RTDs, and Quantum Dots

    27 Jan 2010 | Online Presentations | Contributor(s): Gerhard Klimeck

    Exercises: Barrier Structures Uses: Piece-Wise Constant Potential Barrier Tool Resonant Tunneling Diodes Uses: Resonant Tunneling Diode Simulation with NEGF • Hartree calculation •...

    http://nanohub.org/resources/8259

  3. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    25 Jan 2010 | Courses | Contributor(s): Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum...

    http://nanohub.org/resources/8086

  4. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | Online Presentations | Contributor(s): Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those...

    http://nanohub.org/resources/3988

  5. NanoElectronic MOdeling: NEMO

    20 Dec 2007 | Online Presentations | Contributor(s): Gerhard Klimeck

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational...

    http://nanohub.org/resources/3707

  6. Nanomaterials: Quantum Dots, Nanowires and Nanotubes

    15 Jul 2005 | Online Presentations | Contributor(s): Timothy D. Sands

    What is a quantum dot? What is a nanowire? What is a nanotube? Why are these interesting and what are their potential applications? How are they made? This presentation is intended to begin to...

    http://nanohub.org/resources/376

  7. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | Online Presentations | Contributor(s): Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer...

    http://nanohub.org/resources/386

  8. Nanoparticles in Biology and Materials: Engineering the Interface through Synthesis

    29 Jan 2007 | Online Presentations | Contributor(s): Vincent Rotello

    Monolayer-protected nanoparticles provide versatile tools for nanotechnology. In our research, we use these nanoparticles as building blocks for the creation of functional magnetic and...

    http://nanohub.org/resources/2312

  9. Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

    21 Nov 2006 | Online Presentations | Contributor(s): Charles L. Geraci

    Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

    http://nanohub.org/resources/2008

  10. Nanotechnology Animation Gallery

    22 Apr 2010 | Teaching Materials | Contributor(s): Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download....

    http://nanohub.org/resources/8882

  11. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 | Online Presentations | Contributor(s): Timothy D. Sands

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions...

    http://nanohub.org/resources/1639

  12. NEMO 3D: Intel optimizations and Multiple Quantum Dot Simulations

    03 Aug 2006 | Online Presentations | Contributor(s): Anish Dhanekula, Gerhard Klimeck

    NEMO-3D is a nanoelectronic modeling tool that analyzes the electronic structure of nanoscopic devices. Nanoelectronic devices such as Quantum Dots (QDs) can contain millions of atoms,. Therefore,...

    http://nanohub.org/resources/1673

  13. NEMO3D User Guide for Quantum Dot Simulations

    29 Nov 2011 | Publications | Contributor(s): M. Usman, Gerhard Klimeck

    NEMO 3D is a large and complex simulator; and understanding of its source code requires considerable knowledge of quantum mechanics, condensed matter theory, and parallel programming.

    http://nanohub.org/resources/12593

  14. NEMO5 Tutorial 5A: Devi ce Simulation - Quantum Dots

    17 Jul 2012 | Online Presentations | Contributor(s): Jean Michel D Sellier

    This presentation introduces the capabilities of NEMO5 to simulate quantum dots.

    http://nanohub.org/resources/14705

  15. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | Online Presentations | Contributor(s): Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding...

    http://nanohub.org/resources/191

  16. Path Integral Monte Carlo

    13 Dec 2007 | Tools | Contributor(s): John Shumway, Matthew Gilbert

    Tool Description

    http://nanohub.org/resources/pimc

  17. Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons

    03 Oct 2005 | Online Presentations | Contributor(s): Vladimir M. Shalaev

    The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information...

    http://nanohub.org/resources/194

  18. Polarization Response of Multi-layer InAs Quantum Dot Stacks

    25 Oct 2011 | Online Presentations | Contributor(s): Muhammad Usman

    Recent experimental measurements, without any theoretical guidance, showed that isotropic polarization response can be achieved by increasing the number of QD layers in a QD stack. In this work,...

    http://nanohub.org/resources/12312

  19. Quantitative Modeling and Simulation of Quantum Dots

    18 Apr 2011 | Presentation Materials | Contributor(s): Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is...

    http://nanohub.org/resources/9332

  20. Quantum Dot - synthesis routes

    03 Apr 2007 | Downloads | Contributor(s): Saurabh Madaan

    A brief survey of synthesis routes of quantum dots, with more emphasis on epitaxial and colloidal approaches.

    http://nanohub.org/resources/2520

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.