Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (41-60 of 92)

  1. Nanoelectronic Modeling: Exercises 1-3 - Barrier Structures, RTDs, and Quantum Dots

    27 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    Exercises:Barrier StructuresUses: Piece-Wise Constant Potential Barrier ToolResonant Tunneling DiodesUses: Resonant Tunneling Diode Simulation with NEGF • Hartree calculation • Thomas Fermi potentialQuantum DotsUses: Quantum Dot Lab • pyramidal dot

  2. Nanoelectronic Modeling: From Quantum Mechanics and Atoms to Realistic Devices

    25 Jan 2010 | | Contributor(s):: Gerhard Klimeck

    The goal of this series of lectures is to explain the critical concepts in the understanding of the state-of-the-art modeling of nanoelectronic devices such as resonant tunneling diodes, quantum wells, quantum dots, nanowires, and ultra-scaled transistors. Three fundamental concepts critical to...

  3. Nanoelectronic Modeling: Multimillion Atom Simulations, Transport, and HPC Scaling to 23,000 Processors

    07 Mar 2008 | | Contributor(s):: Gerhard Klimeck

    Future field effect transistors will be on the same length scales as “esoteric” devices such as quantum dots, nanowires, ultra-scaled quantum wells, and resonant tunneling diodes. In those structures the behavior of carriers and their interaction with their environment need to be fundamentally...

  4. NanoElectronic MOdeling: NEMO

    20 Dec 2007 | | Contributor(s):: Gerhard Klimeck

    This presentation was one of 13 presentations in the one-day forum, "Excellence in Computer Simulation," which brought together a broad set of experts to reflect on the future of computational science and engineering.Novel nanoelectronic devices such as quantum dots, nanowires, and ultra-scaled...

  5. Nanomaterials: Quantum Dots, Nanowires and Nanotubes

    15 Jul 2005 |

    What is a quantum dot? What is a nanowire? What is a nanotube? Why are these interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality,...

  6. Nanoparticle Synthesis and Assembly for Biological Sensing

    25 Oct 2005 | | Contributor(s):: Gil Lee

    Nanoparticles have unique physical and chemical properties that make them very useful for biological and chemical sensing. For example, colloidal gold has been used as an optical transducer for antibody based sensing for over twenty years and is the basis for a many of the point-of-use...

  7. Nanoparticles in Biology and Materials: Engineering the Interface through Synthesis

    29 Jan 2007 |

    Monolayer-protected nanoparticles provide versatile tools for nanotechnology. In our research, we use these nanoparticles as building blocks for the creation of functional magnetic and electronic nanocomposite materials. Simultaneously, we are using these particles as scaffolds for biomolecular...

  8. Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

    21 Nov 2006 | | Contributor(s):: Chuck L Geraci

    Nanotechnology and Occupational Safety and Health: What are the Issues, What do we know, and What is NIOSH Doing

  9. Nanotechnology Animation Gallery

    20 Apr 2010 | | Contributor(s):: Saumitra Raj Mehrotra, Gerhard Klimeck

    Animations and visualization are generated with various nanoHUB.org tools to enable insight into nanotechnology and nanoscience. Click on image for detailed description and larger image download. Additional animations are also available Featured nanoHUB tools: Band Structure Lab. Carrier...

  10. Nanotubes and Nanowires: One-dimensional Materials

    17 Jul 2006 |

    What is a nanowire? What is a nanotube? Why are they interesting and what are their potential applications? How are they made? This presentation is intended to begin to answer these questions while introducing some fundamental concepts such as wave-particle duality, quantum confinement, the...

  11. NEMO 3D: Intel optimizations and Multiple Quantum Dot Simulations

    03 Aug 2006 | | Contributor(s):: Anish Dhanekula, Gerhard Klimeck

    NEMO-3D is a nanoelectronic modeling tool that analyzes the electronic structure of nanoscopic devices. Nanoelectronic devices such as Quantum Dots (QDs) can contain millions of atoms,. Therefore, simulating their electronic structure, can take up to several days. In order to simulate and...

  12. NEMO3D User Guide for Quantum Dot Simulations

    29 Nov 2011 | | Contributor(s):: M. Usman, Gerhard Klimeck

    NEMO 3D is a large and complex simulator; and understanding of its source code requires considerable knowledge of quantum mechanics, condensed matter theory, and parallel programming.

  13. NEMO5 Tutorial 5A: Devi ce Simulation - Quantum Dots

    17 Jul 2012 | | Contributor(s):: Jean Michel D Sellier

    This presentation introduces the capabilities of NEMO5 to simulate quantum dots.

  14. Parallel Computing for Realistic Nanoelectronic Simulations

    12 Sep 2005 | | Contributor(s):: Gerhard Klimeck

    Typical modeling and simulation efforts directed towards the understanding of electron transport at the nanometer scale utilize single workstations as computational engines. Growing understanding of the involved physics and the need to model realistically extended devices increases the...

  15. Path Integral Monte Carlo

    13 Dec 2007 | | Contributor(s):: John Shumway, Matthew Gilbert

    Tool Description

  16. Plasmonic Nanophotonics: Coupling Light to Nanostructure via Plasmons

    03 Oct 2005 | | Contributor(s):: Vladimir M. Shalaev

    The photon is the ultimate unit of information because it packages data in a signal of zero mass and has unmatched speed. The power of light is driving the photonicrevolution, and information technologies, which were formerly entirely electronic, are increasingly enlisting light to communicate...

  17. Polarization Response of Multi-layer InAs Quantum Dot Stacks

    20 Oct 2011 | | Contributor(s):: Muhammad Usman

    Recent experimental measurements, without any theoretical guidance, showed that isotropic polarization response can be achieved by increasing the number of QD layers in a QD stack. In this work, we analyse the polarization response of multi-layer quantum dot stacks containing up to nine quantum...

  18. Quantitative Modeling and Simulation of Quantum Dots

    16 Jul 2010 | | Contributor(s):: Muhammad Usman

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be...

  19. Quantum Dot - synthesis routes

    03 Apr 2007 | | Contributor(s):: Saurabh Madaan

    A brief survey of synthesis routes of quantum dots, with more emphasis on epitaxial and colloidal approaches.

  20. Quantum Dot based Photonic Devices

    19 Mar 2012 | | Contributor(s):: Muhammad Usman

    Deployment of nanometer-sized semiconductor quantum dots (QDs) in the active region ofphotonic devices such as lasers, semiconductor optical amplifiers (SOA's), photo-detectors etc.for the next generation communication systems offers unique characteristics such astemperature-insensitivity, high...