Support

Support Options

Submit a Support Ticket

 

Tags: quantum dots

Description

Quantum dots have a small, countable number of electrons confined in a small space. Their electrons are confined by having a tiny bit of conducting material surrounded on all sides by an insulating material. If the insulator is strong enough, and the conducting volume is small enough, then the confinement will force the electrons to have discrete (quantized) energy levels. These energy levels can influence the device behavior at a macroscopic scale, showing up, for example, as peaks in the conductance. Because of the quantized energy levels, quantum dots have been called "artificial atoms." Neighboring, weakly-coupled quantum dots have been called "artificial molecules."

Learn more about quantum dots from the many resources on this site, listed below. More information on Quantum dots can be found here.

Resources (81-87 of 87)

  1. Test for Quantum Dot Lab tool

    09 Nov 2010 | Teaching Materials | Contributor(s): SungGeun Kim, Saumitra Raj Mehrotra

    This test is aimed at self-learning students or instructors who may be engaged in teaching classes related to the quantum dot lab tool. The level of this test should not be difficult for a...

    http://nanohub.org/resources/9968

  2. The History of Semiconductor Heterostructures Research: From Early Double Heterostructure Concept to Modern Quantum Dot Structures

    11 Jul 2011 | Online Presentations | Contributor(s): Zhores I. Alferov

    It would be very difficult today to imagine solid-state physics without semiconductor heterostructures. Semiconductor heterostructures and especially double heterostructures, including quantum...

    http://nanohub.org/resources/11436

  3. Thermoelectric Power Factor Calculator for Nanocrystalline Composites

    18 Oct 2008 | Tools | Contributor(s): Terence Musho, Greg Walker

    Quantum Simulation of the Seebeck Coefficient and Electrical Conductivity in a 2D Nanocrystalline Composite Structure using Non-Equilibrium Green's Functions

    http://nanohub.org/resources/nccpf

  4. Tutorial 4b: Introduction to the NEMO3D Tool - Electronic Structure and Transport in 3D

    29 Mar 2011 | Online Presentations | Contributor(s): Gerhard Klimeck

    Electronic Structure and Transport in 3D - Quantum Dots, Nanowires and Ultra-Thin Body Transistors

    http://nanohub.org/resources/11049

  5. Visualization of and Educational Tool for Quantum Dots

    15 Aug 2004 | Presentation Materials | Contributor(s): Aaron Christensen, Adrian Rios

    Quantum dots (QDs) are confined structures made of metals and semiconductors that are capable of containing free electrons.The ability to visualize these small devices is advantageous in...

    http://nanohub.org/resources/743

  6. VolQD: Graphics Hardware Accelerated Interactive Visual Analytics of Multi-million Atom Nanoelectronics Simulations

    13 Dec 2005 | Online Presentations | Contributor(s): Wei Qiao

    In this work we present a hardware-accelerated direct volume rendering system for visualizing multivariate wave functions in semiconducting quantum dot (QD) simulations. The simulation...

    http://nanohub.org/resources/789

  7. What Can the TEM Tell You About Your Nanomaterial?

    26 Feb 2007 | Online Presentations | Contributor(s): Eric Stach

    In this tutorial, I will present a brief overview of the ways that transmission electron microscopy can be used to characterize nanoscale materials. This tutorial will emphasize what TEM does...

    http://nanohub.org/resources/2359

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.